多模态是指将两个或两个以上的模态以各种形式进行组合的过程。在这个概念中,每一种信息的来源或形式都可以被视为一种模态(Modality)。目前研究领域主要关注对图像、文本和语音这三种模态的处理。由于不同模态的表现方式各异,对事物的看待角度也会有所不同,因此会出现一些交叉(导致信息冗余)和互补(比单一特征更优秀)的现象。模态之间可能还存在多种不同的信息交互方式,如果能够合理处理多模态信息,就能够获得更为丰富的特征信息。这种综合性的处理方式在多模态研究中变得越来越重要,因为它有望提高信息表达的维度,更全面地捕捉和理解复杂的现实场景。
图 1 多模态融合示意图
1.2 多模态图像
根据研究对象的多样性,多模态图像的研究可细分为多个特定领域,包括但不限于多聚焦图像、医学图像、多曝光图像、红外与可见光图像以及RGB和深度图像。
在多聚焦图像方面,研究者着重于处理图像的焦点变化,以提高对不同焦距下图像的清晰度和细节捕捉能力。医学图像的研究聚焦于整合多模态信息以提高医学诊断和影像学的精确性。对于多曝光图像,研究侧重于处理由相机在不同曝光条件下捕获的图像,以获得更广泛的动态范围。而红外与可见光图像的研究致力于融合不同波段的信息,提高对复杂场景的感知能力。在RGB和深度图像方面,研究者关注于同时利用彩色信息和深度信息,以实现更为准确的图像理解和场景分析。
这些不同领域的研究方向展示了多模态图像研究的广泛应用,并为深入理解和解决不同领域的图像处理问题提供了有益的框架。在这些任务中,模态之间的信息交互融合是其中最重要的工作。目前,在多模态图像融合领域中,学者们主要致力于使多模态图像融合的工作更加高效、应用更广泛。
2.1 多聚焦图像融合
多聚焦图像融合通过合并不同焦距下的图像,能够提高整体图像的清晰度。在某一图像中,不同部分可能在不同的焦点下,通过融合这些部分,使得整体图像更加清晰,有效克服了单一焦点图像中的模糊问题。由于不同焦距下的图像能够捕捉到不同层次的细节信息,多聚焦图像融合使得融合后的图像能够更全面地保留细节。这对于需要高精度图像分析的应用,如医学影像、计算机视觉等领域具有重要价值。在多聚焦图像融合中,不同焦距下的图像往往具有不同的亮度和对比度,因此,融合这些图像能够拓展整体图像的动态范围。这对于处理高动态范围(HDR)图像,如在户外拍摄或光照条件复杂的场景中,有助于更好地还原真实场景。多聚焦图像融合可以提高图像的视觉质量,使人眼更容易感知图像中的信息。对于视觉感知要求较高的应用,如虚拟现实、增强现实等,多聚焦图像融合能够提供更优秀的视觉体验。
图 2 多聚焦图像融合
因此,多聚焦图像融合的意义在于综合利用不同焦距下的信息,提高图像的质量和信息的全面性,对于多种图像处理应用都具有积极作用。
2.2 医学图像融合
医学图像融合能够整合来自不同成像模态的信息,如CT(计算机断层扫描)、MRI(磁共振成像)和PET(正电子发射断层扫描)等。这样的融合能够提供更全面、更综合的解剖和功能信息,有助于医生全面了解病灶的性质和位置。融合不同成像模态的医学图像可以提供更多的生理和解剖信息,有助于医生进行更精准的诊断和手术规划。例如,在肿瘤诊断中,结合不同模态的图像能够更准确地判断肿瘤的性质、边界和生长状态。 医学图像融合为医学研究提供了丰富的数据来源。研究者可以结合多种成像技术,深入探讨疾病的发展机制、治疗效果等方面的问题,促进医学科学的发展。在手术过程中,医学图像融合能够实现实时监测和导航。医生可以在手术过程中结合多模态图像,更准确地定位手术目标,避免损伤健康组织,提高手术的安全性和效果。通过医学图像融合,医生可以更好地了解患者的病情,制定个性化的治疗方案。对于一些需要定制治疗方案的疾病,如肿瘤治疗,个性化的信息能够为治疗提供更精确的指导。 结合不同成像模态的信息,可以在一定程度上降低对患者的辐射剂量。通过减少多次扫描的需要,可以更好地保护患者的健康。
图 3 医学图像融合
总体而言,医学图像融合为医学影像学提供了更多的维度和深度,推动了医学影像技术的发展,提高了医疗诊断和治疗的水平,有助于实现更精准、个性化的医学服务。
2.3 RGB-D图像融合
RGB图像提供了颜色信息,而深度图像提供了场景中不同物体的距离信息。通过融合这两种信息,能够更全面地理解场景,实现对物体的更准确识别和定位。深度图像能够捕捉场景中物体的距离信息,为三维重建提供了关键的深度信息。与RGB图像融合后,可以实现更精确的立体视觉效果,对于虚拟现实、增强现实等应用具有重要意义。深度图像能够提供物体的深度边界信息,融合RGB图像后,可以在物体之间更准确地分割和检测边界,提高图像分割的精度。深度图像对于遮挡物体的识别有独特优势,融合RGB图像后,能够更好地处理场景中的遮挡关系,提高对复杂场景的理解和分析能力。RGB与深度信息的融合有助于实时目标追踪。深度信息提供了物体的空间位置,结合颜色信息可以更准确地跟踪目标,适用于机器人导航、无人车辆等领域。另一方面,RGB与深度图像的融合可用于更自然的人机交互。通过获取用户的姿势和手势等深度信息,结合颜色信息,可以实现更智能和灵活的人机交互方式。
图 4 RGB-D图像融合
综合来看,RGB图像与深度图像的融合可以为图像处理、计算机视觉和人机交互等领域提供更为丰富和深入的信息,推动了多个应用领域的技术发展。
2.4 红外与可见光图像融合
红外图像通常能够捕捉到可见光图像中难以察觉的细节,尤其在低光条件下。通过红外与可见光图像融合,可以提高图像的对比度和清晰度,使得细节更加突出,对于目标识别和场景分析具有显著的优势。可见光和红外波段分别擅长于不同的信息获取,可见光对颜色和形状有更敏感的感知,而红外则能够穿透雾霾和光照差异,对热辐射更为敏感。融合这两者能够弥补彼此的信息缺失,形成更为全面的图像。红外与可见光图像融合可提高目标检测和识别的性能。红外图像对于温度差异敏感,适用于夜间或低光环境下的目标检测,而可见光图像提供更多形状和颜色信息,融合后的图像更有利于目标的准确检测和识别。在复杂的自然环境中,如雾霾、烟尘等,可见光图像易受到干扰。红外图像能够在这些环境中表现更为稳定,融合可见光和红外图像能够提高系统在恶劣环境下的鲁棒性。
图 5 红外与可见光图像融合
红外与可见光图像融合在军事和安防领域有广泛应用。融合后的图像可以提供更全面的环境感知,加强对潜在威胁的监测和识别。在医学影像领域,红外图像能够提供有关人体温度的信息,与可见光图像融合可用于医学诊断。在气象学中,红外与可见光图像融合