💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
参考文献
摘 要:本文针对无线信道“指纹”特征建模,包括“指纹”特征参数的建立、匹配识别、连续特征参数的“区域划分”等问题,用无线信道参数的提取算法、BP 神经元网络算法和我们建立的微元试探法对模型进行分析求解。
关键词:无线信道“指纹”;BP 神经网络;微元试探法;模式识别
移动通信产业一直以惊人的速度迅猛发展,已成为带动全球经济发展的主要高科技产业之一,并对人类生活及社会发展产生巨大影响。在移动通信中,发送端和接收端之间通过电磁波来传输信号,我们可以想象两者之间有一些看不见的电磁通路,并把这些电磁通路称为无线信道。无线信道与周围的环境密切相关,不同环境下的无线信道具有一些差异化的特征。如何发现并提取这些特征并将其应用于优化无线网络,是当前的一个研究热点。类比人类指纹,我们将上述无线信道的差异化的特征称为无线信道“指纹”。无线信道“指纹”特征建模,就是在先验模型和测试数据的基础上,提取不同场景或不同区域内无线信道的差异化的特征,进而分析归纳出“指纹”的“数学模型”,并给出清晰准确的“数学描述”。
在典型的无线信道中,电磁波的传输不是单一路径的,而是由许多因散射(包括反射和衍射)而形成 的路径所构成。由于电磁波沿各条路径的传播距离不同,因此相同发射信号经由各路径到达接收端的时间 各不相同,即多径的时延之间有差异。此外,各条路径对相同发射信号造成的影响各不相同,即多径的系 数之间有差异。如图 1 所示。
工程上,考虑到多径系数及多径时延的影响,在保证精度的前提下,可以用“离散线性系统”为无线
信道建模。需要注意的是,该模型中的信号及多径系数均为复数。理想信道测量可以理解为获取该系统的单位序列响应,即获取单位脉冲“ (k) ”经无线信道 传输后被接收到的信号,如下图所示。
结论:
基于问题,我们建立了无线信道参数“指纹”提取算法和“指纹”评价指标模型。对矩阵奇异值分解
算法和 ESPRIT 算法提取的参数进行了分析,这两种算法提取的参数能够很好地区别不同的场景。所以实 际操作中,只用矩阵奇异值分解算法联合 ESPRIT 算法提取参数即可。
BP 神经元网络算法可以很好的识别场景及样本模式,所以这里采用这种模式识别算法是行之有效的。 我们建立的微元试探法能很好地对连续信道区域进行划分并且模型评价函数也能发挥出很好的评价作用。
📚2 运行结果
部分代码:
[sn,esen]=size(T); %sn是场景个数;esen是每个场景实验个数
fn=3; %特征个数
for i=1:sn
for j=1:esen
u=[u;feature_self(T{i,j})];
end
u=reshape(u,fn,esen);
U{i}=u;
fea_average(:,i)=sum(U{i},2)/esen; %%每一列代表一个场景的平均特征向量,几列就有几个场景
u=[];
end
b1=feature_self(B1); %待匹配的向量(匹配库就是fea_average)
b2=feature_self(B2); %待匹配的向量
%%神经网络匹配法
BPmodeldistinguish( fea_average,b1 );
BPmodeldistinguish( fea_average,b2 );
%% 相对误差矩阵表示法
for i=1:sn
V1(:,i)=abs(fea_average(:,i)-b1)./b1; %第一组待测数据与场景的相对误差矩阵
V2(:,i)=abs(fea_average(:,i)-b2)./b2; %第二组待测数据与场景的相对误差矩阵
end
%% 输出总相对误差最小的场景号
vn=sum(V1); %第一组待测数据与各场景总误差的向量
vn1=find(vn==min(vn)); %与第一组待测数据总误差最小的场景号
vnt=sum(V2); %第二组待测数据与各场景总误差的向量
vn2=find(vnt==min(vnt)); %与第二组待测数据总误差最小的场景号
fprintf('第一组待测数据与各场景总相对误差分别为:%4.2f,%4.2f,%4.2f\n',vn(1),vn(2),vn(3));
fprintf('第一组待测数据最接近的场景为:场景%d\n',vn1);
fprintf('第二组待测数据与各场景总相对误差分别为:%4.2f,%4.2f,%4.2f\n',vnt(1),vnt(2),vnt(3));
fprintf('第二组待测数据最接近的场景为:场景%d\n',vn2);
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]王瑞星,刘斌,杜健鹏,李明.基于两种算法的无线信道“指纹”特征识别[J].通信技术,2016,49(10):1271-1279.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取