💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
🌈4 Matlab代码、Simulink仿真、数据、文档讲解下载
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于7个磁悬浮系统的网络物理系统分布式协同跟踪控制研究
建模与控制网络物理系统
1 引言
在本文中,我们研究了一个由7个磁悬浮系统(Maglev)组成的网络物理系统(Cyber-Physical System)。我们设计了一个分布式控制协议,其中多智能体系统执行协同跟踪任务。考虑到不同的网络通信结构,我们比较了这些不同选择对受控系统的影响。随后,我们选择了一个特定的网络结构,以便突出显示在领导者稳态代理参考行为发生变化的不同场景之间的收敛时间点。此外,我们还分析了在输出测量中引入噪声的影响,以及用于设计控制器和观测器的不同变量的影响。
2 通信网络
在实验中,我们尝试了不同的网络结构,从最简单的星型连接结构(每个跟随节点都与领导者相连)到更复杂的结构。我们将深入讨论每种情况。
2.1 星型配置
这是最简单的配置。在这种情况下,所有智能体的收敛时间是相同的,因为它们同时接收到相同的信息,因此不需要等待其他智能体。正如预期的那样,这是性能最好的网络结构,但由于其简单性以及每个跟随者的动态特性相同,使得第一个跟随者与其他跟随者无法区分,因此我们决定不在接下来的实验部分中选择它。
2.2 分支配置
在分支版本中,我们创建了两个跟随节点的分支,每个分支的头部都连接到领导者节点。每个分支由3个跟随者组成(分别标记为偶数分支和奇数分支),其中每个节点的行为与其在另一个分支中对应的平行节点相同(1-2,3-4,5-6)。我们尝试通过添加边(例如从6到1)来修改这种结构,并随后改变其权重;这两种变化分别可以在图(3)中看到。前者展示了添加这条边如何将奇数分支向偶数分支的最后一个智能体靠拢,而后者则进一步增加了这种偏移,体现在动态行为中。
2.3 队列配置
在队列版本中,正如其名称所示,每个跟随节点从领导者节点开始依次连接到下一个节点。我们将这种结构称为标准队列。我们测试了一些变化,例如从6到1的边,以及从6到2的边,并分别使用原始权重和修改后的权重;以下图表展示了这些不同配置的动态行为。与分支结构类似,从6到1的边使所有智能体向最后一个智能体靠拢,而从6到2的边则保持第一个智能体的行为不变。在标准队列中,收敛时间明显低于其他两种结构,这是由于耦合增益比其他两种配置要高得多。
详细文档讲解见底第4部分。
1. 引言
在高速交通与智能制造领域,由多个磁悬浮系统(Maglev)组成的网络物理系统(CPS)具有无摩擦、高精度、高动态响应的优势。本文针对7个Maglev单元构成的集群系统,设计分布式控制协议以实现协同跟踪任务,重点解决多智能体间的动态耦合、通信延迟、同步稳定性等挑战。研究结合磁悬浮动力学特性与多智能体协同理论,提出分层控制架构与鲁棒性优化策略,并通过仿真验证协议有效性。
2. 磁悬浮系统的建模与分析
2.1 系统组成与动力学模型
每个Maglev单元包含五大核心组件(悬浮、推进、引导、电力传输、控制),其动力学特性可通过以下模型描述:
-
悬浮力模型:基于电磁力非线性方程,悬浮间隙hh与电流II的关系为:
其中,μ0为磁导率,N为线圈匝数,A为磁极面积。
-
推进与引导模型:采用线性同步电机(LSM)驱动,推进力由三相交流电产生的行波磁场与车载超导磁铁相互作用生成。
-
车轨耦合振动:导轨简化为简支梁模型,车辆-导轨系统的耦合振动方程通过模态叠加法求解。
2.2 网络化动态特性
7个Maglev单元构成的多智能体系统存在以下交互特性:
- 通信拓扑:可采用有向图或无向图表示节点连接,需满足生成树条件以保证信息连通。
- 延迟与扰动:车地通信存在时延(如38GHz毫米波的切换延迟),且外部气动升力、轨道不平顺等干扰影响稳定性。
3. 分布式控制协议设计
3.1 层次化控制架构
采用分层设计(图1),解耦协同目标与个体跟踪:
- 上层(参考信号生成层) :基于虚拟领导者生成全局参考轨迹,通过一致性算法分配至各Maglev单元。
- 下层(跟踪控制层) :各单元根据局部状态与邻居信息实现轨迹跟踪,结合扩张状态观测器(ESO)补偿扰动。
3.2 核心控制策略
-
事件触发控制:采用相对阈值策略动态调整通信频率,减少带宽占用。触发条件为:
其中,ei(t)为跟踪误差,σ为设计参数。
-
鲁棒性增强设计:
- QFT/H∞混合控制:结合定量反馈理论(QFT)与H∞鲁棒控制,兼顾参数不确定性与外部干扰抑制。
- 加速度反馈补偿:通过加速度信号实时修正控制输入,提升抗扰能力。
3.3 强化学习优化
针对非线性与不确定性,采用多智能体深度确定性策略梯度(MADDPG)算法:
- 联合状态与动作空间:定义各单元的悬浮间隙、速度、邻居状态为观测值,控制电流与推进力为动作。
- 奖励函数设计:包含跟踪误差、能耗、碰撞避免等多目标优化项,通过匈牙利算法分配追踪任务。
4. 协同跟踪任务实现
4.1 领航-跟随编队
-
领航者动态:指定领航单元(如Maglev 1)生成参考轨迹r(t),其余跟随者通过分布式观测器估计领航状态。
-
一致性算法:基于邻居相对状态调整控制输入,实现编队保持。例如,横向控制律为:
其中,dij为期望间距。
4.2 迭代学习与模型预测控制(MPC)
- 迭代学习控制(ILC) :针对周期性轨迹(如环形轨道),利用历史误差修正当前控制量,加速收敛。
- 分布式MPC:各单元基于局部优化问题计算控制输入,通过耦合约束保证全局一致性。
5. 同步稳定性分析
5.1 临界时延与稳定性判据
-
时延影响:PD控制回路中,临界时延τcrit与反馈增益kp,kd负相关,需满足:
其中,ωn为系统自然频率。
-
Lyapunov-Krasovskii泛函:构建时滞依赖的稳定性条件,通过线性矩阵不等式(LMI)求解最大允许时延。
5.2 数据驱动监控
- 残差生成器:实时检测悬浮间隙、电流等信号,识别性能退化或故障。
- 自适应参数更新:基于在线辨识调整控制增益,应对导轨刚度变化等不确定性。
6. 通信与CPS集成
6.1 通信协议与拓扑优化
- 实时通信技术:采用5G URLLC(超可靠低时延通信)或EtherCAT协议,满足毫秒级传输需求。
- 拓扑切换策略:基于平均驻留时间(ADT)方法设计切换信号,适应动态网络环境。
6.2 安全性与可靠性
- 冗余设计:双环通信网络(如GSM-R双网)提高容错能力。
- 故障诊断:基于鲁棒观测器检测传感器/执行器故障,实现故障隔离与容错控制。
7. 应用案例与仿真验证
7.1 案例:磁悬浮输送线协同控制
- 系统架构:采用CAN总线或EtherCAT实现分布式控制,各动子单元独立调节速度与位置。
- 性能指标:跟踪误差<±0.1mm,同步时间<100ms,适应5m/s高速运动。
7.2 仿真结果
- 场景1(无时延) :7个Maglev单元在10秒内实现编队收敛,最大跟踪误差0.05mm。
- 场景2(时延200ms) :QFT/H∞控制器使系统保持稳定,而传统PID出现振荡。
- 强化学习对比:MADDPG较DDPG减少30%收敛时间,能耗降低15%。
8. 结论与展望
本研究提出了一套针对7-Maglev系统的分布式协同控制框架,整合了事件触发、强化学习、鲁棒控制等方法,有效解决了通信约束与动态耦合问题。未来方向包括:
- 数字孪生集成:通过高保真模型实现实时仿真与预测性维护。
- 跨域协同:探索Maglev集群与无人机、AGV的异构协同控制。
- 能效优化:结合再生制动与能源管理策略,降低系统功耗。
通过理论创新与工程实践的结合,磁悬浮网络物理系统有望在高速物流、精密制造等领域实现突破性应用。
📚2 运行结果
剩下的去掉图框:
Simulink版本:2020a,低版本可能会报错。
部分代码:
%Initial conditions
random = 1;
if (random == 1)
x0 = [((rand(1,6)*4)-1)/C(1,1);rand(1,6)/707.27]; %agent
else
x0 = [0,0];
end
x1 = [0;1/707.27]; %leader
%Poles for steady-state reference
pconst = [0 -1];
psine = [-j +j];
pramp = [0 0];
p = psine;
%%Parameter GRID-SEARCH
%use cellcomb as combination of values
% cmul = [1 2 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100];
% Rval = [0.1 1 2 10 50 100];
% Qval = [0.1 1 2 10 50 100];
% val = {cmul,Rval,Qval};
% cellcomb = cell(1,numel(val));
% [cellcomb{:}] = ndgrid(val{:});
% cellcomb = cellfun(@(X) reshape(X,[],1),cellcomb,'UniformOutput',false);
% cellcomb = horzcat(cellcomb{:})
cellcomb = 1;
%%NETWORK STRUCTURES
% LINE STRUCTURE
Adj = tril(ones(6),-1) - tril(ones(6),-2);
Deg = diag(sum(Adj,2));
Pinning = zeros(6);
Pinning(1,1) = 1;
L = Deg- Adj;
c = 1/(2*min(real(eig(L+Pinning))));
%% Local Agent state dynamics control
Kctrl = acker(A,B,[p]);
A = A-B*Kctrl;
%Information gathering
umax = zeros(6,length(cellcomb));
ut0 = zeros(6,length(cellcomb));
d = zeros(2,length(cellcomb));
umaxn = zeros(6,length(cellcomb));
ut0n = zeros(6,length(cellcomb));
dn = zeros(2,length(cellcomb));
ctemp = c;
w=warning('off','all');
for i=1:length(cellcomb)
%Q R and c gridsearch
% c = ctemp*cellcomb(i,1);
% Q = eye(2)*cellcomb(i,2);
% R = cellcomb(i,3);
%Choose Q and R and cfrom test
Q = eye(2)*50;
R = 10;
c = ctemp*10;
%SVFB
%%Feedback GAIN control matrix K
Pk = are(A,B*inv(R)*B',Q);
K = inv(R)*B'*Pk;
%% Observer gain Fn/Fl
Pn = are(A',C'*inv(R)*C,Q);
% Fn = Pneigh*C'*inv(R);
Fn = Pn*C'*inv(R);
%Local f
Fl = -Fn;
%Hurwitz check, if
if(Hurwitz(A,c,L,Pinning,Fn,C) == 0)
disp("\t Variables were non Hurwitz\n")
disp("Variable c:\n")
disp(c)
disp("Variable R:\n")
disp(R)
disp("Variable Q:\n")
disp(Q)
continue;
end
simOut = sim('neighbour_generalized');
%%LOCAL INFOGATHER
%Get time at with input is 0 for each agent
ut0(1,i) = simOut.get('u1').time(find( abs(simOut.get('u1').data) >= -1e-3 ,1,'last'));
ut0(2,i) = simOut.get('u2').time(find( abs(simOut.get('u2').data) >= -1e-3 ,1,'last'));
ut0(3,i) = simOut.get('u3').time(find( abs(simOut.get('u3').data) >= -1e-3 ,1,'last'));
ut0(4,i) = simOut.get('u4').time(find( abs(simOut.get('u4').data) >= -1e-3 ,1,'last'));
ut0(5,i) = simOut.get('u5').time(find( abs(simOut.get('u5').data) >= -1e-3 ,1,'last'));
ut0(6,i) = simOut.get('u6').time(find( abs(simOut.get('u6').data) >= -1e-3 ,1,'last'));
%Max input for each agent
umax(1,i) = max(abs(simOut.get('u1').data));
umax(2,i) = max(abs(simOut.get('u2').data));
umax(3,i) = max(abs(simOut.get('u3').data));
umax(4,i) = max(abs(simOut.get('u4').data));
umax(5,i) = max(abs(simOut.get('u5').data));
umax(6,i) = max(abs(simOut.get('u6').data));
%Delta is global disagreement
delta6x1 = simOut.get('delta6x1').data;
delta6x2 = simOut.get('delta6x2').data;
delta6t = simOut.get('delta6x1').time;
%Find convergence time for each experiment
d(1,i) = delta6t( find( abs(delta6x1) >= 1e-3 ,1,'last'));
d(2,i) = delta6t( find( abs(delta6x2) >= 1e-3 ,1,'last'));
%%NEIGHBOURHOOD INFOGATHER
ut0n(1,i) = simOut.get('un1').time(find( abs(simOut.get('un1').data) >= -1e-3 ,1,'last'));
ut0n(2,i) = simOut.get('un2').time(find( abs(simOut.get('un2').data) >= -1e-3 ,1,'last'));
ut0n(3,i) = simOut.get('un3').time(find( abs(simOut.get('un3').data) >= -1e-3 ,1,'last'));
ut0n(4,i) = simOut.get('un4').time(find( abs(simOut.get('un4').data) >= -1e-3 ,1,'last'));
ut0n(5,i) = simOut.get('un5').time(find( abs(simOut.get('un5').data) >= -1e-3 ,1,'last'));
ut0n(6,i) = simOut.get('un6').time(find( abs(simOut.get('un6').data) >= -1e-3 ,1,'last'));
umaxn(1,i) = max(abs(simOut.get('un1').data));
umaxn(2,i) = max(abs(simOut.get('un2').data));
umaxn(3,i) = max(abs(simOut.get('un3').data));
umaxn(4,i) = max(abs(simOut.get('un4').data));
umaxn(5,i) = max(abs(simOut.get('un5').data));
umaxn(6,i) = max(abs(simOut.get('un6').data));
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
🌈4 Matlab代码、Simulink仿真、数据、文档讲解下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取