💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
基于多目标遗传NSGAII、多目标免疫遗传算法求解考虑成本、救援时间和可靠性的海上救援选址多目标优化问题研究
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于多目标遗传NSGAII、多目标免疫遗传算法求解考虑成本、救援时间和可靠性的海上救援选址多目标优化问题研究
一、引言
海上救援对于保障海上人员生命安全、减少财产损失至关重要。然而,海上救援选址问题是一个复杂的多目标优化问题,需要综合考虑成本、救援时间和可靠性等多个因素。这些因素之间往往相互冲突,例如,降低成本可能会导致救援时间增加或可靠性降低。多目标遗传NSGAII算法和多目标免疫遗传算法为解决此类复杂问题提供了有效的途径。本研究旨在深入探讨如何运用这两种算法解决海上救援选址的多目标优化问题。
二、海上救援选址多目标优化问题分析
(一)成本因素
建设和运营救援站点需要投入大量资金,包括场地购置、设施建设、人员配备以及日常维护等成本。在选址时,要尽量降低这些成本,以提高资源利用效率。例如,在一些偏远海域建设救援站点可能成本较高,而在靠近主要航线且基础设施相对完善的区域建设,成本可能相对较低。
(二)救援时间因素
海上事故的救援具有紧迫性,救援时间直接关系到事故造成的损失大小。救援时间受到救援站点与事故发生地的距离、交通状况以及救援资源调配等因素影响。选址应确保救援力量能够在最短时间内到达事故现场,减少救援延迟。
(三)可靠性因素
可靠性是指救援站点在各种复杂环境和情况下能够正常执行救援任务的能力。这包括设备的可靠性、人员的专业素质以及应对突发情况的能力等。一个可靠的救援站点能够在紧急时刻稳定地提供救援服务,提高救援成功率。
三、多目标遗传NSGAII算法
(一)算法原理
NSGAII(非支配排序遗传算法II)由Kalyanmoy Deb等人提出,用于解决多目标优化问题 。它通过非支配排序技术区分不同解的优先级,将种群中的个体按照非支配关系分为不同的层级,层级越低的个体越优。同时,通过拥挤度计算来维护解集的多样性,避免解的聚集。在每次迭代中,算法通过选择、交叉和变异等遗传操作产生新的种群,逐步进化得到一组均匀分布的最优解集合,即Pareto前沿 。
(二)在海上救援选址中的应用
- 编码表示:将海上救援选址的位置信息进行编码,例如可以采用实数编码或二进制编码,每个编码代表一个可能的救援站点选址方案。
- 适应度函数计算:根据成本、救援时间和可靠性等目标函数计算每个个体的适应度值。对于成本目标,适应度可以设置为成本的倒数,以保证成本越低适应度越高;对于救援时间目标,适应度可以设置为救援时间的倒数;对于可靠性目标,适应度可以根据可靠性评估指标进行正向映射,可靠性越高适应度越高。
- 遗传操作:运用选择操作选择优良个体,交叉操作对优良个体进行基因交换产生新个体,变异操作对个体的基因进行随机变异,以增加种群的多样性。
四、多目标免疫遗传算法
(一)算法原理
多目标免疫遗传算法是在遗传算法的基础上,融合了免疫系统的克隆选择、免疫记忆和免疫网络等原理的一种优化算法 。它模仿生物免疫系统的功能,具有记忆和学习的能力。通过引入免疫机制,算法能够增强全局搜索能力和多样性保持能力,避免算法过早收敛到局部最优解。例如,克隆选择原理使得算法能够对优良个体进行克隆和变异,免疫记忆机制可以记住历史上的优良解,免疫网络机制能够调节种群的多样性 。
(二)在海上救援选址中的应用
- 免疫初始化:在算法开始时,对种群进行免疫初始化,将一些已知的较好解作为免疫记忆细胞加入到种群中。
- 免疫操作:在算法迭代过程中,对种群进行免疫操作。例如,通过克隆选择对适应度高的个体进行克隆,然后对克隆个体进行变异操作,以产生更优的个体。同时,利用免疫记忆机制,当新产生的个体优于免疫记忆细胞时,更新免疫记忆细胞。
- 与遗传操作结合:将免疫操作与遗传算法的选择、交叉和变异操作相结合,协同进化,逐步找到更优的海上救援选址方案。
五、算法实现与实验
(一)实验环境
使用MATLAB作为编程平台,利用其丰富的函数库和工具箱进行算法实现和实验分析。MATLAB是一个集数值分析、矩阵计算、信号处理和图形显示于一体的高性能语言和交互式环境,非常适合进行复杂算法的开发和工程应用 。
(二)实验步骤
- 数据准备:收集海上地理信息、事故发生概率分布、成本数据以及救援资源等相关信息,为算法提供输入数据。
- 算法实现:分别实现多目标遗传NSGAII算法和多目标免疫遗传算法,编写相应的MATLAB程序代码。
- 参数设置:设置算法的参数,如种群大小、迭代次数、交叉概率、变异概率等,并通过实验调整参数以获得较好的结果。
- 实验对比:对两种算法进行多次实验,对比它们在求解海上救援选址多目标优化问题时的性能,包括解的质量、收敛速度和多样性等方面。
六、结果分析
(一)性能指标评估
使用一些性能指标来评估算法的优劣,如Pareto前沿的逼近度、解集的多样性指标等。逼近度指标可以衡量算法得到的解与真实Pareto前沿的接近程度,多样性指标可以反映解在目标空间中的分布均匀程度。
(二)实验结果对比
通过实验结果对比发现,多目标免疫遗传算法在解集的多样性方面表现较好,能够找到更多不同的最优解,为决策者提供更丰富的选择。而多目标遗传NSGAII算法在收敛速度上可能相对较快,能够更快地找到一组近似最优解。具体来说,在某些测试案例中,多目标免疫遗传算法得到的Pareto前沿解集在目标空间中的分布更加均匀,覆盖范围更广;而多目标遗传NSGAII算法能够在较少的迭代次数内达到较好的收敛效果。
七、结论与展望
(一)研究结论
本研究通过对多目标遗传NSGAII算法和多目标免疫遗传算法在海上救援选址多目标优化问题中的应用研究,表明这两种算法都能够有效地解决该问题。多目标免疫遗传算法在保持解集多样性方面具有优势,多目标遗传NSGAII算法在收敛速度方面有一定特点。决策者可以根据实际需求选择合适的算法或结合两种算法的优势来确定海上救援选址方案。
(二)未来展望
未来的研究可以进一步改进算法,例如引入自适应参数调整策略,根据算法的运行情况自动调整参数,以提高算法的性能。同时,可以考虑将更多的实际因素纳入海上救援选址模型,如海洋环境因素、救援资源的动态变化等。此外,还可以探索将这两种算法与其他优化算法相结合,形成更高效的混合算法,为海上救援选址问题提供更优的解决方案。
📚2 运行结果
部分代码:
%% 画出免疫算法收敛曲线
% 记录当代最佳个体和种群平均适应度
% 找出ranks为1的个体的索引
index1 = find(individuals.ranks == 1);
best_chrom = individuals.chrom(index1(1),:); % 找出最优个体
best_finess = individuals.fitness(index1(1),:);
average = mean(individuals.fitness); % 计算平均适应度
trace = [trace; best_finess, average]; % 记录
% 提取四个不同的目标函数值
objective1 = trace(:, [1, 4]); % 第一个目标函数
objective2 = 1./trace(:, [2, 5]); % 第二个目标函数
objective3 = trace(:, [3, 6]); % 第二个目标函数
% 创建迭代次数向量
iterations = 1:size(trace, 1);
% 第一个目标
subplot(1, 3, 1);
plot(iterations, objective1(:, 1), 'b', 'LineWidth', 0.7);
hold on;
plot(iterations, objective1(:, 2), 'r', 'LineWidth', 0.7);
xlabel('迭代次数');
ylabel('万元');
title('总成本');
% 第二个目标
subplot(1, 3, 2);
plot(iterations, objective2(:, 1), 'b', 'LineWidth', 0.7);
hold on;
plot(iterations, objective2(:, 2), 'r', 'LineWidth', 0.7);
xlabel('迭代次数');
ylabel('概率');
title('可靠性');
% 第三个目标
subplot(1, 3, 3);
plot(iterations, objective3(:, 1), 'b', 'LineWidth', 0.7);
hold on;
plot(iterations, objective3(:, 2), 'r', 'LineWidth', 0.7);
xlabel('迭代次数');
ylabel('小时');
title('救援总用时');
disp(['当前进化次数:',num2str(GEN)])
pause(0.0001);
end
combined_vector = [];
for i = 1:numel(fronts)
combined_vector = [combined_vector fronts{i}];
end
pareto_index = combined_vector(1:6);
pareto_fronts = individuals.chrom(pareto_index, :);
figure;
pareto = individuals.fitness;
scatter3(pareto(:,1), 1./pareto(:,2), pareto(:,3), 'o', 'filled');
xlabel('成本');
ylabel('可靠性');
zlabel('救援总用时');
title('帕累托前沿');
grid on;
% 加载仿真数据
islandPosition = load("islandPosition.mat").islandPosition; % 岛屿坐标
riskPosition = load("riskPosition.mat").riskPosition; % 风险点坐标
V = load("oilSpill.mat").oilSpill'; % 溢油量情况
c_l = load("constructionCost.mat").constructionCost; % 地形建设成本
figure;
num_solutions = size(pareto_fronts, 1);
for solution_idx = 1:num_solutions
% 提取当前方案
current_solution = pareto_fronts(solution_idx, :);
points = islandPosition(current_solution, :);
%找出最近集结点
num_points = nGenes;
distance_mat = zeros(size(riskPosition, 1), size(points, 1));
for i = 1:size(points, 1)
for j = 1:size(riskPosition, 1)
distance = norm(points(i, :) - riskPosition(j, :));
distance_mat(j, i) = distance;
end
end
[~,b1]=min(distance_mat');
temp_distance_mat = distance_mat;
for i = 1:size(riskPosition, 1)
temp_distance_mat(i,b1(i)) = inf;
end
[~,b2]=min(temp_distance_mat');
index1=cell(1,nGenes);
index2=cell(1,nGenes);
for i=1:nGenes
%计算各个集结点的目标
index1{i}=find(b1==i);
index2{i}=find(b2==i);
end
subplot(2, 3, solution_idx);
title(['方案 ' num2str(solution_idx)]); % 标题
cargox = islandPosition(current_solution, 1);
cargoy = islandPosition(current_solution, 2);
plot(islandPosition(:, 1), islandPosition(:, 2), 'o', 'LineWidth', 1, ...
'MarkerEdgeColor', 'y', ...
'MarkerFaceColor', 'y', ...
'MarkerSize', 5);
hold on;
plot(cargox, cargoy, 's', 'LineWidth', 1, ...
'MarkerEdgeColor', 'b', ...
'MarkerFaceColor', 'b', ...
'MarkerSize', 9);
% 绘制事故风险点
for i = 1:size(riskPosition, 1)
scatter(riskPosition(i, 1), riskPosition(i, 2), [], V(i), 'filled', 'MarkerEdgeColor', 'k');
end
% 设置图例和标签
colorbar;
colormap('jet');
for i = 1:size(riskPosition, 1)
x1 = [riskPosition(i, 1), islandPosition(current_solution(b1(i)), 1)];
y1 = [riskPosition(i, 2), islandPosition(current_solution(b1(i)), 2)];
plot(x1, y1, 'c', 'LineWidth', 1);
if plot_flag == 1
x2 = [riskPosition(i, 1), islandPosition(current_solution(b2(i)), 1)];
y2 = [riskPosition(i, 2), islandPosition(current_solution(b2(i)), 2)];
plot(x2, y2, 'g', 'LineWidth', 1);
end
text(riskPosition(i, 1), riskPosition(i, 2) + 5, num2str(i), 'HorizontalAlignment', 'center', 'VerticalAlignment', 'bottom');
hold on;
end
for i = 1:nGenes
text(islandPosition(current_solution(i), 1), islandPosition(current_solution(i), 2) - 30, num2str(i), ...
'HorizontalAlignment', 'center', 'VerticalAlignment', 'bottom', 'Color', 'r');
end
end
pareto_fitness = individuals.fitness(pareto_index, :);
disp('帕累托前沿:');
for i = 1:length(pareto_fitness)
disp(['方案',num2str(i)]);
disp(['成本:', num2str(pareto_fitness(i,1)),'万元']);
disp(['可靠性:', num2str(100/pareto_fitness(i,2)),'%']);
disp(['总救援时长:', num2str(pareto_fitness(i,3)),'小时']);
end
% 最优解
best_solution = pareto_fronts(1, :);
points = islandPosition(best_solution, :);
%找出最近集结点
num_points = nGenes;
distance_mat = zeros(size(riskPosition, 1), size(points, 1));
for i = 1:size(points, 1)
for j = 1:size(riskPosition, 1)
distance = norm(points(i, :) - riskPosition(j, :));
distance_mat(j, i) = distance;
end
end
[a1,b1]=min(distance_mat');
temp_distance_mat = distance_mat;
for i = 1:size(riskPosition, 1)
temp_distance_mat(i,b1(i)) = inf;
end
[a2,b2]=min(temp_distance_mat');
index1=cell(1,nGenes);
index2=cell(1,nGenes);
for i=1:nGenes
%计算各个集结点的目标
index1{i}=find(b1==i);
index2{i}=find(b2==i);
end
figure;
title('最优方案'); % 标题
cargox = islandPosition(best_solution, 1);
cargoy = islandPosition(best_solution, 2);
plot(islandPosition(:, 1), islandPosition(:, 2), 'o', 'LineWidth', 1, ...
'MarkerEdgeColor', 'y', ...
'MarkerFaceColor', 'y', ...
'MarkerSize', 5);
hold on;
plot(cargox, cargoy, 's', 'LineWidth', 1, ...
'MarkerEdgeColor', 'b', ...
'MarkerFaceColor', 'b', ...
'MarkerSize', 9);
% 绘制事故风险点
for i = 1:size(riskPosition, 1)
scatter(riskPosition(i, 1), riskPosition(i, 2), [], V(i), 'filled', 'MarkerEdgeColor', 'k');
end
% 设置图例和标签
colorbar;
colormap('jet');
for i = 1:size(riskPosition, 1)
x1 = [riskPosition(i, 1), islandPosition(best_solution(b1(i)), 1)];
y1 = [riskPosition(i, 2), islandPosition(best_solution(b1(i)), 2)];
plot(x1, y1, 'c', 'LineWidth', 1);
if plot_flag == 1
x2 = [riskPosition(i, 1), islandPosition(best_solution(b2(i)), 1)];
y2 = [riskPosition(i, 2), islandPosition(best_solution(b2(i)), 2)];
plot(x2, y2, 'g', 'LineWidth', 1);
end
text(riskPosition(i, 1), riskPosition(i, 2) + 5, num2str(i), 'HorizontalAlignment', 'center', 'VerticalAlignment', 'bottom');
hold on;
end
for i = 1:nGenes
text(islandPosition(best_solution(i), 1), islandPosition(best_solution(i), 2) - 50, num2str(i), ...
'HorizontalAlignment', 'center', 'VerticalAlignment', 'bottom', 'Color', 'r');
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]胡宇博.基于多目标免疫进化算法的动态车辆路径优化研究[D].郑州大学[2025-02-06].
[2]刘金华.多目标遗传算法在企业能源规划中的应用研究[D].广东工业大学,2013.
[3]叶碎高,温进化,王士武.多目标免疫遗传算法在梯级水库优化调度中的应用研究[J].南水北调与水利科技, 2011, 9(1):4.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取