💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
分布式能源的选址与定容在IEEE30节点系统中的实现研究
一、IEEE30节点测试系统概述
- 拓扑结构与参数
IEEE30节点系统包含30个节点和41条线路,节点编号1-30,分为高压(Th,132kV)、中压(W,33kV)和低压(Tm,11kV)传输线路。系统包含6台发电机(G1-G6)分布于关键节点(如节点1、2、5等),负荷节点(如节点5、12、20)分布不均匀,部分节点(如节点28、29)具有多电压等级转换功能。典型特征包括:- 发电机位置:节点1(平衡节点)、2、5、8、11、13。
- 变压器配置:节点12、16等用于电压调节。
- 线路参数:包含电阻、电抗等电气参数,用于潮流计算。
- 发电机位置:节点1(平衡节点)、2、5、8、11、13。
2. 负荷分布特征
- 空间分布:负荷集中在部分节点,如节点5(90MW)、12(21MW)、20(17MW),而节点8、22等负荷较低(3-4MW)。
- 时间波动:日负荷曲线呈双峰特征,午间峰值约270MW,深夜低谷约200MW。
- 电压等级关联:高压节点(如节点28)负荷较高(15MW),低压节点(如节点30)负荷为11MW。
二、分布式能源(DER)选址与定容优化模型
-
目标函数
- 经济性:最小化综合成本(投资+运行+网损)。
- 技术性:降低系统网损、提升电压稳定裕度(如VSI指数)。
- 环保性:减少碳排放(如结合风电/光伏渗透率)。
其中,Cinvest为投资成本,Coper为运行成本,Ploss为网损,λ为权重系数。
-
约束条件
- 电压稳定性:节点电压范围0.90-1.05 p.u.,中枢节点(如节点2、3、11、13)需严格控制在0.90-1.02 p.u.。
- 功率平衡:发电机与DER出力总和需满足负荷需求。
- 容量限制:DER容量受节点可接入空间和线路传输能力约束。
- 运行约束:爬坡率、启停时间(火电机组)、可再生能源波动性。
三、优化方法与算法选择
- 经典方法
- 解析法:基于灵敏度分析确定候选节点。
- 启发式算法:如遗传算法(GA)、粒子群优化(PSO)。
PSO参数示例:种群规模20-50,惯性权重0.35-0.85,认知系数1.496。
- 解析法:基于灵敏度分析确定候选节点。
2. 改进算法
- 多目标优化:动态密集距离排序(保持解集均匀性)。
- 混合模型:配置-运行协同优化(如混合整数线性规划)。
- 智能算法:鲸鱼优化(WOA)、人工鱼群算法(降低冗余成本15%-20%)。
-
算法对比
算法 优势 局限性 PSO 收敛快,适合多变量问题 易陷入局部最优 鲸鱼优化 全局搜索能力强 参数敏感,计算复杂度高 人工鱼群 成本控制优异(降幅25%) 迭代次数多,实时性差
四、IEEE30节点系统中的DER规划案例
-
案例1:风电与光伏接入
- 位置:风电接入节点10、27(各60MW),光伏接入节点15、20(各50MW)。
- 效果:新能源渗透率39.64%,网损降低18%,电压偏差改善30%。
-
案例2:多类型DER协同
- 配置:节点7(风电600MW)、13(风电600MW)、16(光伏500MW)。
- 优化目标:最小化煤耗成本,提升调峰能力(火电深度调峰成本1050元/kW)。
-
案例3:储能优化配置
- 模型:双层优化(选址+容量),以IEEE33节点为例,扩展至IEEE30系统。
- 结果:电压合格率从87%提升至98%,储能容量减少12%。
五、仿真验证与结果分析
-
工具与数据
- 仿真平台:MATLAB/Simulink、PSAT。
- 数据增强:添加5%噪声扩展数据集至10万样本,训练集:测试集=10:1。
-
关键指标
- 经济性:总成本降低10%-25%。
- 技术性:网损减少15%-30%,VSI指数提升0.1-0.3。
- 稳定性:N-1故障下电压崩溃风险降低40%。
六、研究挑战与未来方向
-
挑战
- 不确定性建模:风光出力与负荷波动的时序相关性。
- 高维优化:30节点系统衍生的混合整数问题求解效率低。
- 多能耦合:电-热-气多能流协同尚未充分研究。
-
未来方向
- 强化学习:基于PPO算法的安全约束经济调度。
- 数字孪生:结合实时数据动态调整DER配置。
- 市场机制:嵌入需求响应与辅助服务交易。
七、参考文献与代码资源
- 开源代码:MATLAB工具箱(粒子群/遗传算法)。
- 典型文献:
- 改进人工鱼群算法、鲸鱼优化、协同优化模型。
- 电压稳定约束处理。
结论:IEEE30节点系统为DER规划提供了标准测试环境,结合多目标优化算法与实际约束条件,可显著提升系统经济性与稳定性。未来需进一步探索高比例可再生能源接入下的动态优化与市场机制设计。
📚2 运行结果
部分代码:
function ybus=ybuspg_ds33
line_dat=Ldat33;
b_dat=Bdat33;
fb=line_dat(:,2);tb=line_dat(:,3);
Res=line_dat(:,4);
Xe=line_dat(:,5);
Bs=line_dat(:,6); % 接地导纳, B/2...
a = line_dat(:,7); % 抽头设定值..
z = Res + 1i*Xe; % 阻抗矩阵...
y = 1./z; % 节点导纳
b = 1i*Bs; % 使 B 为虚部...
nb = max(max(fb),max(tb)); % 节点个数...
ybus = zeros(nb,nb); % 初始化节点导纳矩阵..
br=max(line_dat(:,1)); % br= 支路数
bus=max(line_dat(:,3)); % bus= 节点个数
baseMva=max(b_dat(:,7)); % 基准功率
baseKv=12.62; % 基准电压
z=zeros(bus,bus);
zpu=zeros(bus,bus);
for ii=1:br
x=line_dat(ii,2);
y=line_dat(ii,3);
z(x,y)=complex(line_dat(ii,4),line_dat(ii,5)); % 在 pu 中转换 a 和 y
zpu(x,y)=z(x,y)*baseMva/(((baseKv)^2)*1000);
end
ybus=zeros(bus,bus);
for ii=1:br
x=line_dat(ii,2);
y=line_dat(ii,3);
ybus(x,y)= -(1/zpu(x,y))/a(x);
ybus(y,x)= -(1/zpu(x,y))/a(x);
ybus(x,x)= ((ybus(x,x)-ybus(x,y))/a(x))+(1i*(line_dat(ii,6)/2));
ybus(y,y)= (ybus(y,y)-ybus(y,x)/a(x));
end
ybus;
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]左超文,刘敏,何旺.基于大象优化算法的分布式能源的选址与定容[J].智能计算机与应用, 2023, 13(8):80-87.
[2]王东旭.考虑时空特性的分布式能源和电动汽车充电站联合优化配置[D].中原工学院,2023.
🌈4 Matlab代码、数据下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取