基于LSTM、BP神经网络实现电力系统负荷预测(Python代码实现)

 👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

2.1 LSTM

2.2 BP 

🎉3 参考文献

 🌈4 Python代码及数据


💥1 概述

前馈神经网络的输出只依赖当前输入,但是在文本、视频、语音等时序数据中,时序数据长度并不固定,前馈神经网络的输入输出维数不能任意更改,因此难以适应这类型时序数据的处理。短期电力负荷预测的输入与输出均为时间序列,其本质仍是基于先前元素的序列预测问题,为此需要采用与前馈神经网络不同的方法,进行短期电力负荷预测。
循环神经网络具有记忆功能,可提升网络性能。与前馈神经网络相比,循环神经网络具备可同时接受自身信息与其他神经元信息的神经元,更贴合生物神经网络结构,在文本等序列数据分析中有广泛应用。循环神经网络的参数学习随时间反向传播,错误信息前传递学习,建立长时间间隔的状态间依赖,支持序列数据的分析处理。但随着网络层数增多与时间加长,循环神经网络容易因梯度消失或爆炸问题,导致只能学习短距离依赖,无法解决长距离依赖问题。为了解决循环神经网络的长程依赖问题,在循环神经网络上添加门控机制,实现调度信息积累速度控制,这类方法被称之为基于门控的循环神经网络,例如LSTM长短期记忆网络。LSTM是一种基于RNN的改进模型,通过引入门和单元的概念,解决长距离依赖问题,具有比RNN更强的适应性。LSTM网络的单结构如图1所示。每个神经单元内部结构如图2所示。
每个LSTM神经单元都包含遗忘门、输入门和输出门三个门控结构,以控制数据有信息的换地。其中,遗忘门负责丢弃和保留上一个时刻的有效信息在C{C内,输入门将当前时刻有效信息存放在Ct内,输出门决定神经单元输出中C·的信息。
 


基于LSTM和BP神经网络的电力系统负荷预测研究

一、引言

电力系统负荷预测是电力行业的重要任务之一。精确的负荷预测可以帮助电力公司合理调度发电设备,优化能源利用,降低运营成本。随着人工智能技术的发展,人工神经网络算法逐渐应用于电力系统负荷预测中,并取得了显著的研究成果。本文将探讨LSTM(长短期记忆网络)和BP神经网络在电力系统负荷预测中的应用,并分析其中的优势和挑战。

二、人工神经网络算法简介

人工神经网络算法是一种模仿人脑神经网络结构和功能的计算模型。它由大量神经元单元组成,通过模拟神经元间的连接和信息传递,实现学习和推理的功能。人工神经网络算法可以分为前馈神经网络、循环神经网络和深度神经网络等不同类型,每种类型都有其特定的结构和应用领域。

三、LSTM与BP神经网络在电力系统负荷预测中的应用

  1. BP神经网络算法

BP神经网络算法是目前应用最广泛的人工神经网络算法之一。它通过反向传播算法,根据输入样本与预测结果之间的误差,调整网络的权值和阈值,从而实现负荷预测。BP神经网络算法具有训练速度快、预测精度高等优点,在电力系统负荷预测中应用广泛。

在电力系统负荷预测中,BP神经网络可以学习并捕捉负荷变化的模式,如周期性、趋势和异常情况。同时,BP神经网络还可以考虑气象因素对负荷的影响,从而提高预测的准确性。

  1. LSTM算法

LSTM是一种特殊的循环神经网络,适用于处理时间序列数据。它通过长短期记忆单元的结构,可以捕捉时间序列数据中的长期依赖关系,从而提高负荷预测的准确性。LSTM算法在电力系统负荷预测中的应用逐渐增多,并取得了较好的研究成果。

在电力系统负荷预测中,LSTM的优势在于它可以更好地处理负荷数据的时间相关性和季节性特征。LSTM通过引入门控机制(输入门、遗忘门和输出门),能够有效地记住远期信息,并忽略不重要的细节,从而提高预测的精度。

四、模型优势与挑战

  1. 优势
  • 高精度:人工神经网络算法具有强大的非线性映射能力,可以更准确地捕捉电力系统负荷预测中的复杂规律和趋势。相比传统的统计方法,人工神经网络算法在负荷预测精度上具有明显优势。
  • 自适应性:人工神经网络算法能够自动学习和适应电力系统负荷的变化。
  • 并行化处理:由于其分布式的计算结构,人工神经网络算法可以实现并行化处理,从而加快负荷预测的速度,满足实时性要求。
  1. 挑战
  • 数据集质量:人工神经网络算法对输入数据的质量要求较高,包括数据的准确性、完整性以及时序性。如果输入的数据存在错误或缺失,将会对预测结果产生较大影响。
  • 训练时间和计算复杂度:人工神经网络算法的训练时间较长,训练过程中需要大量的计算资源。对于大规模电力系统的负荷预测,计算复杂度较高,需要针对算法进行进一步优化和加速。
  • 模型解释性:人工神经网络算法通常被认为是黑盒模型,其内部机制难以解释。对于电力系统运营企业而言,解释模型的预测结果对于决策和管理至关重要。

五、实证研究

为了验证LSTM和BP神经网络在电力系统负荷预测中的有效性,可以选取实际数据进行实证研究。例如,可以选取某地区的电力负荷历史数据,并结合气象特征数据进行训练和测试。通过比较不同模型的预测误差和性能,可以评估LSTM和BP神经网络在电力系统负荷预测中的优劣。

六、结论

LSTM和BP神经网络在电力系统负荷预测中具有重要的应用价值。它们能够捕捉负荷变化的复杂规律和趋势,提高预测的精度和准确性。然而,在实际应用中仍需注意数据集质量、训练时间和计算复杂度以及模型解释性等挑战。未来的研究应重点解决这些问题,进一步提高人工神经网络算法在电力系统负荷预测中的应用效果。

📚2 运行结果

2.1 LSTM

 

 

 

2.2 BP 

 

 

 部分代码:

draw.iloc[:,0].plot(figsize=(12,6))
draw.iloc[:,1].plot(figsize=(12,6))
plt.legend(('real', 'predict'),loc='upper right',fontsize='15')
plt.title("Test Data",fontsize='30') #添加标题
#展示在测试集上的表现 
draw=pd.concat([pd.DataFrame(y_test),pd.DataFrame(y_test_predict)],axis=1);
draw.iloc[200:300,0].plot(figsize=(12,6))
draw.iloc[200:300,1].plot(figsize=(12,6))
plt.legend(('real', 'predict'),loc='upper right',fontsize='15')
plt.title("Test Data",fontsize='30') #添加标题
#展示在测试集上的表现 
draw=pd.concat([pd.DataFrame(y_train),pd.DataFrame(y_train_predict)],axis=1)
draw.iloc[100:400,0].plot(figsize=(12,6))
draw.iloc[100:400,1].plot(figsize=(12,6))
plt.legend(('real', 'predict'),loc='upper right',fontsize='15')
plt.title("Train Data",fontsize='30') #添加标题
#展示在训练集上的表现 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]刘海峰,王艳如.基于LSTM的短期电力负荷预测算法研究[J].现代信息科技,2021,5(23):40-42+47.DOI:10.19850/j.cnki.2096-4706.2021.23.011.

[2]陈振宇,杨斌,阮文俊,沈杰,吴丽莉.基于LSTM神经网络的短期电能负荷预测[J].电力大数据,2021,24(04):8-15.DOI:10.19317/j.cnki.1008-083x.2021.04.002.

[3]胡永迅,姜媛媛,夏玲.基于GA-BP的输电线路负荷预测研究[J].邵阳学院学报(自然科学版),2021,18(03):44-51.

 🌈4 Python代码及数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值