【故障诊断】最大二阶循环平稳盲反卷积(CYCBD)在滚动体轴承故障诊断中的应用(Matlab代码代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

最大二阶循环平稳盲反卷积(CYCBD)在滚动体轴承故障诊断中的应用研究

一、CYCBD的基本原理与技术特点

二、CYCBD在滚动轴承故障诊断中的应用案例

三、技术难点与解决方案

四、效果评估与对比分析

五、未来研究方向

📚2 运行结果

2.1 稀疏最大谐波噪声比反卷积

2.2 最大相关峰度反卷积

2.3 最大二阶环平稳盲反卷积

🎉3 参考文献

🌈4 Matlab代码、数据下载


💥1 概述

摘要:从振动信号中提取周期性脉冲(滚动轴承故障的重要指标)对于故障诊断具有重要意义。由最小熵反卷积 (MED) 发展而来的最大相关峰度反卷积 (MCKD) 已被证明是增强滚动轴承和齿轮箱诊断周期性脉冲的有效工具。然而,当 MCKD 应用于在恶劣工作条件下运行的轴承时,仍然存在挑战。难点主要来自于对多输入参数的严格要求和复杂的重采样过程。为了克服这些局限性,本文提出了一种改进的MCKD(IMCKD)。新方法通过计算包络信号的自相关来估计迭代周期,而不是依赖于提供的先前周期。此外,迭代周期将通过在每一步迭代后更新迭代周期,逐渐接近真正的故障周期。由于IMCKD不受高峰度值脉冲信号的影响,因此新方法从分配的迭代计数中选择最大峰度滤波信号作为最终选择。与MCKD相比,IMCKD有三个优点。首先,在不考虑前期和班次顺序选择的情况下,IMCKD效率更高,鲁棒性更高。其次,IMCKD不需要重采样过程,这对于后续的频谱分析和包络频谱分析非常方便,无需重置采样率。第三,IMCKD在轴承复合故障诊断方面具有显著的性能优势,扩大了应用范围。最后,通过大量模拟轴承故障信号验证了IMCKD的有效性和优越性,并应用于机车轴承的复合故障和单故障诊断。

最大相关峰度反卷积(MCKD)改进的MCKD 滚动体轴承 故障诊断 复合故障 自相关

最大二阶循环平稳盲反卷积(CYCBD)在滚动体轴承故障诊断中的应用研究

一、CYCBD的基本原理与技术特点

最大二阶循环平稳盲反卷积(CYCBD)是一种基于循环平稳性理论的信号处理方法,旨在从含噪观测信号中提取具有周期性冲击特征的故障信号。其核心是通过最大化二阶循环平稳性指标(ICS2),设计逆滤波器以增强故障脉冲的周期性成分。

技术特点

  1. 循环平稳性优化:CYCBD通过最大化目标信号的二阶循环平稳性(ICS2),利用广义Rayleigh熵的特征值分解算法迭代优化逆滤波器,从而分离出与故障相关的周期性冲击信号。
  2. 噪声鲁棒性:相较于最小熵解卷积(MED)和最大相关峭度解卷积(MCKD),CYCBD在强噪声环境下表现出更高的鲁棒性,尤其在变转速工况下仍能有效提取故障特征。
  3. 参数敏感性:滤波器长度(N)和循环频率(α)是算法的关键参数。文献建议α初始化为故障特征频率的理论值,N通常设置为100,但在复杂工况下需结合自适应优化方法(如麻雀搜索算法、布谷鸟算法)调整参数以提高适应性。
  4. 非平稳信号处理能力:CYCBD适用于非平稳信号,能够处理因转速波动引起的信号调制现象。
二、CYCBD在滚动轴承故障诊断中的应用案例
  1. 单一故障特征提取

    • 案例1:梁士通等(2022)提出结合CYCBD与CEEMDAN的方法,首先通过CYCBD滤波增强周期性冲击成分,再利用CEEMDAN分解信号并筛选高峭度模态分量,最终通过包络谱分析成功提取微小故障特征频率。
    • 案例2:刘桂敏等(2022)采用改进的CYCBD方法,结合RCC-NPH融合指标自适应选择循环频率,成功分离滚动轴承内圈和外圈的复合故障信号,包络谱中清晰呈现故障频率的1~6次谐波。
  2. 复合故障诊断

    • 案例3:项伟等(2024)利用麻雀搜索算法(SSA)优化CYCBD参数,实现滤波器长度(N)和循环频率(α)的自适应选择。实验结果显示,该方法在强噪声背景下分离出内圈故障的1~4倍频及外圈故障的1~6次谐波,诊断效果显著优于传统方法。
    • 案例4:黄包裕等(2021)采用布谷鸟搜索算法(CSA)优化CYCBD参数,以改进最大谐波显著性指标(IHSI)为优化依据,解决了参数依赖人工经验的问题,验证了CYCBD在复合故障中的高效解卷积能力。
  3. 与其他信号处理方法的联合应用

    • 案例5:褚惟等(2024)提出基于FWECS-CYCBD的方法,通过频率加权能量相关谱(FWECS)估计循环频率集,结合等步长搜索策略自适应选择滤波器长度,在低信噪比条件下有效提取故障特征。
    • 案例6:刘晖等(2024)将共振稀疏分解(RSSD)与CYCBD结合,利用大猩猩优化算法(GTO)自适应选择参数,成功从机车轴承实测数据中提取出107.5 Hz的故障特征频率。
三、技术难点与解决方案

滚动轴承故障诊断的共性挑战

  • 信号复杂性:振动信号通常具有多分量调制、非平稳性和强背景噪声。
  • 早期故障特征微弱:故障初期冲击能量低,易被噪声掩盖。
  • 复合故障分离困难:多故障耦合导致信号成分重叠,传统方法难以区分。

CYCBD的针对性解决方案

  1. 参数自适应优化

    • 采用智能算法(如SSA、CSA、GTO)优化N和α,避免人工经验误差。
    • 结合包络谐波乘积谱(EHPS)估计循环频率,提升参数设置的准确性。
  2. 联合降噪与分解方法

    • 与CEEMDAN结合,先通过CYCBD增强周期性冲击,再分解信号以提取多尺度特征。
    • 集成共振稀疏分解(RSSD)预处理,分离信号中的共振成分,再以CYCBD增强故障脉冲。
  3. 复合故障特征分离

    • 利用RCC-NPH融合指标综合评估故障成分的谐波显著性,抑制干扰频率并独立提取多故障特征。
四、效果评估与对比分析
  1. 评估指标

    • 信噪比(SNR) :衡量去噪后信号的清晰度,CYCBD在低SNR(如-9 dB)下仍能有效提取故障特征。
    • 包络谱峰值显著性:通过包络谱中故障频率及其谐波的幅值对比,验证特征增强效果。
    • 谐波成分完整性:统计包络谱中提取的故障谐波次数(如内圈1~4倍频、外圈1~6次谐波),评估算法对微弱特征的敏感性。
  2. 与传统方法的对比

    • MED与MCKD:CYCBD在变转速和强噪声条件下的包络谱清晰度更高,且能提取更多谐波成分。
    • OMEDA与MOMEDA:CYCBD在处理非等间距脉冲和多重周期性源时表现更优,例如齿轮箱复合故障的诊断。
  3. 实验验证

    • 合成信号测试:模拟轴承内圈、外圈及滚珠故障,CYCBD处理后包络谱的故障频率误差小于1%。
    • 实测数据验证:基于凯斯西储大学和XJTU-SY轴承数据集,CYCBD的诊断准确率比传统方法提升约9.89%。
五、未来研究方向
  1. 参数自适应的智能化:探索深度学习与CYCBD的结合,利用神经网络自动学习最优滤波器参数。
  2. 多物理场融合诊断:集成声发射、温度监测等多源数据,提升复杂工况下的诊断鲁棒性。
  3. 实时性与计算效率优化:开发快速迭代算法(如FIF-CYCBD),降低计算复杂度以满足在线监测需求。

📚2 运行结果

2.1 稀疏最大谐波噪声比反卷积

 

 

2.2 最大相关峰度反卷积

2.3 最大二阶环平稳盲反卷积

 

 

 

 

 部分代码:

%%
load sig3
x = x - mean(x);
addpath('..\00 subfunction\')

%%
fs = 20000;
N = length(x);
t = (0:N - 1) / fs;
t = t(:);
BPFI = 38;

%% Raw data
figure;
plot(t, x, 'b');
xlabel('Time [s]')
ylabel('Amplitude')
title('Raw data')
legend(['Kurtosis=', num2str(kurtosis(x))])
setfontsize(20);
set(gcf, 'position', [100, 100, 800, 400])
axis tight
ylim([-2 2.5])

envelope_x = abs(hilbert(x)) - mean(abs(hilbert(x)));
ff = 0:fs / N:fs - fs / N;
amp_envelope_x = abs(fft(envelope_x, N)) * 2 / fs;
figure;
plot(ff, amp_envelope_x, 'b')
xlabel('Frequency [Hz]')
ylabel('Amplitude')
setfontsize(20);
set(gcf, 'position', [100, 100, 800, 400])
axis tight
xlim([0, 200]);
ylim([0 0.025])

%% SMHD

[y_final, f_final, kurtIter] = smhd(fs, x, 100, 30, 1.5 * rms(x), [], 0);

%% Filtered signal
figure;
plot(t, y_final, 'b');
xlabel('Time [s]')
ylabel('Amplitude')
title('Filtered signal by SMHD')
legend(['Kurtosis=', num2str(kurtosis(y_final))])
setfontsize(20);
set(gcf, 'position', [100, 100, 800, 400])
axis tight
ylim([-3.5 4.5])

envelope_y = abs(hilbert(y_final)) - mean(abs(hilbert(y_final)));
amp_envelope_y = abs(fft(envelope_y, N)) * 2 / fs;
figure;
plot(ff, amp_envelope_y, 'b')
xlabel('Frequency [Hz]')
ylabel('Amplitude')
setfontsize(20);
set(gcf, 'position', [100, 100, 800, 400])
axis tight
xlim([0, 200]);
ylim([0 0.3])

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码、数据下载

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值