【EI复现】风-水电联合优化运行分析(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

【EI复现】风-水电联合优化运行分析研究

一、能源互联网(EI)复现的核心内涵

二、风-水电联合优化运行的基本原理与技术框架

1. 互补性分析

2. 优化模型构建

3. 技术框架

三、现有研究文献与实验数据来源

1. 典型文献与模型

2. 数据来源与参数

四、复现关键算法与工具链

1. 优化算法

2. 工具链

五、复现中的常见问题与解决方案

1. 数据缺失

2. 模型偏差

六、未来研究方向

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文章


💥1 概述

【EI复现】风-水电联合优化运行分析研究

摘要:以风-水电联合运行后的风电场效益最大为目标,利用粒子群优化算法来进行风-水电联合优化运行的仿真分析。仿真结果表明风-水电联合供电不但提高了风电场的收益,同时也平滑了风电场的功率输出,这将有利于提高风电在电力系统中的份额。促进我国风电产业的发展。

  为提高风电场的供电质量同时增加其发电效益,利用储能技术为风电场配置一个蓄能系统是比较重要的解决措施之一。风电的蓄能技术有水力蓄能、压缩空气蓄能、超导磁力蓄能、流体电池组、电解水制氢等,其中水力蓄能是技术较成熟的一种蓄能方式,且小型的水力发电系统投资也不大,因此为采用风-水电联合供电模式不失为一种优选的方案"。
本文提出的基于遗传算法的风-水电联合优化运行就是采用水力蓄能的方式,为风电场配置一个水力发电系统,当可利用风能数值较大时,将一部分风能通过水泵以水能的形式储存于水库中,然后在可利用风能数值较小或上网电价较高时再经过水电发电机组将存储的能量输送到电网中去,以此实现风电场功率的优化输出,这样一方面平滑了风电场的输出波动,另一方面也充分利用了风能,增加了风电场的效益。


一、能源互联网(EI)复现的核心内涵

能源互联网(EI)复现指基于EI架构理念,通过多能源协同优化、智能调控与信息物理融合技术,重现或验证特定场景下能源系统的优化运行效果。其核心特征包括:

  1. 多能互补:整合风电、水电等可再生能源,通过时空互补性提升能源利用率(如风电的季节稳定性与水电的短期调节能力互补)。
  2. 信息-能量协同:依托物联网(E-IoT)和智能算法实现实时数据采集与动态调度,确保能源流、信息流、业务流的协同优化。
  3. 市场驱动:结合电力市场化机制,设计多能源交易模型,促进风电-水电联合系统的经济性与灵活性。

二、风-水电联合优化运行的基本原理与技术框架
1. 互补性分析
  • 时间尺度互补:风电短期波动性强(小时级),但年际波动小;水电受径流季节性影响大,但日调节能力强。例如,甘肃酒泉风电场与黄河梯级水电的季节性互补可减少弃风率至1.65%以下。
  • 容量互补:水电作为“灵活电源”平抑风电出力波动,风电则提供电量支持,降低水电枯水期发电压力。
2. 优化模型构建
  • 目标函数:以弃风电量最小化(min⁡ΔEminΔE)或联合发电效益最大化为核心目标。
  • 数学模型见第4部分。
  • 约束条件:包括水库库容限制、水电机组出力范围、电网负荷平衡等。
3. 技术框架
  • 数据层:风速预测、径流预报、负荷需求数据。
  • 优化层:采用智能算法(如改进量子粒子群算法、随机规划)求解多目标优化问题。
  • 调度层:动态调整水电出力以匹配风电波动,并通过储能(如抽水蓄能)增强系统灵活性。

三、现有研究文献与实验数据来源
1. 典型文献与模型
  • 黄河上游-甘肃风电场案例:5座百万千瓦级水电站与千万千瓦级风电场联合调度,采用量子粒子群算法减少弃风。
  • 随机规划模型:引入风速预测不确定性,动态调整风-水电出力计划。
  • 多目标优化:兼顾经济性(火电成本)、稳定性(出力波动)与环保性(碳排放)。
2. 数据来源与参数
  • 数据获取:通过实时监测系统(如水库水位、风速传感器)与历史数据库(如径流记录、电网负荷)采集数据。
  • 关键参数
    • 水电站:库容(亿m³)、出库流量(m³/s)、强迫出力(万kW)。
    • 风电场:最大/最小出力、风速-功率转换曲线。
  • 公开数据集:部分研究使用中国西北电网公开数据或仿真平台(如MATLAB/Simulink)生成合成数据。

四、复现关键算法与工具链
1. 优化算法
  • 智能算法
    • 量子粒子群算法(QPSO) :解决高维非线性问题,收敛速度优于传统PSO。
    • 改进灰狼算法:引入Tent混沌映射,增强全局搜索能力。
  • 传统方法:线性规划(LP)用于简化场景,但难以处理多目标与不确定性。
2. 工具链
  • 建模工具:MATLAB(优化工具箱)、Python(Pyomo库)。
  • 仿真平台:DIgSILENT PowerFactory(电网稳定性分析)、HOMER(可再生能源系统设计)。
  • 数据处理:Pandas(数据清洗)、Scikit-learn(插值预测)。

五、复现中的常见问题与解决方案
1. 数据缺失
  • 成因:传感器故障、历史记录不全。
  • 处理方法
    • 插值法:均值/中位数填补短期缺失。
    • 模型预测:利用ARIMA或LSTM预测径流与风速。
    • 多重插补:生成多个可能数据集,降低偏差。
2. 模型偏差
  • 参数不确定性:采用蒙特卡洛模拟评估风速与径流预测误差的影响。
  • 算法局限性:引入混合优化策略(如PSO+遗传算法)避免局部最优。
  • 验证方法:对比独立运行与联合运行场景,量化弃风率、发电成本等指标。

六、未来研究方向
  1. 多能源协同:扩展至风-水-光-储联合系统,提升能源消纳能力。
  2. 市场机制设计:探索风电-水电参与的电力现货市场与辅助服务市场。
  3. 数字孪生技术:构建高精度仿真模型,支持实时调度与风险预判。

📚2 运行结果

部分代码:

%% 优化
F=fun(P_w,P_h,P_p,sizepop,NVAR,C,C_p);             %计算目标函数(适应度值)
E=zeros(sizepop,NVAR+1);
%---------对不符合条件的解(粒子)加上惩罚因子----------------------------%
%判断哪些解需要加入惩罚因子
P=P_h+P_w;
M=1000;                 %惩罚因子     
for j=1:sizepop
% 约束条件(2)            
    for nvar=1:NVAR
        if P(j,nvar)>P_max                              %flag=1时表示不满足约束条件
            F(j)=F(j)-M;          %加上惩罚因子
        end
        if P(j,nvar)<P_min                              %flag=1时表示不满足约束条件
            F(j)=F(j)-M;          %加上惩罚因子
        end
% 约束条件(3)
        if P_p(j,nvar)+P_w(j,nvar)>P_gmax
            F(j)=F(j)-M;
        end
        if P_p(j,nvar)+P_w(j,nvar)<P_gmin
            F(j)=F(j)-M;
        end
% 约束条件(4)
        if P_h(j,nvar)>min(P_hmax,E(j,nvar)*eta_h/t)
            F(j)=F(j)-M;
        end
         E(j,nvar+1)=E(j,nvar)+t*(eta_p*P_p(j,nvar)-P_h(j,nvar)/eta_h);         %下一时刻水库储能
         %E(j,nvar+1)=max(0,E(j,nvar+1));      %若E小于0,应加以约束
        if P_h(j,nvar)<P_hmin
           F(j)=F(j)-M;
        end
% 约束条件(6)        
         if E(j,nvar)<0
            F(j)=F(j)-M;
         end
         if E(j,nvar)>E_max
            F(j)=F(j)-M;
         end
% 约束条件(5)
        if P_p(j,nvar)>P_pmax
            F(j)=F(j)-M;
        end
        if P_p(j,nvar)<P_pmin
            F(j)=F(j)-M;
        end 
% 约束条件(7)
        if P_v(nvar)-P_w(j,nvar)-P_p(j,nvar)<0
            F(j)=F(j)-M;
        end
%附加约束条件(1)
%{
         if P_h(j,nvar)*P_p(j,nvar)~=0
            F(j)=F(j)-M*(P_h(j,nvar)*P_p(j,nvar));
        end
%}
    end
end
% 个体极值和群体极值(初始情况)
[bestfitness,I]=max(F);                %找出最大的惩罚函数:bestfitness为惩罚函数值;I为序号数
zbest=Vary(I,:);                       %全局最佳
gbest=Vary;                            %个体最佳

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]潘文霞,范永威,杨威.风-水电联合优化运行分析[J].太阳能学报,2008(01):80-84.

🌈4 Matlab代码、数据、文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值