旋转坐标系下的角度变化率与其在世界坐标系下角速度的关系

引言

在推导动力学过程中发现了自己对于相关知识还有好多漏洞,尤其是旋转坐标系下的角速度变化率和世界坐标系下的角速度的关系难以理解,于是写下自己学习过程中的心得。

我们常用的都是通过RPY的旋转变换来达到旋转坐标系,绕轴的转动顺序则是X-Y-Z。

RPY :指绕世界坐标系旋转(即绕的轴在整个旋转中是固定不变的),依次绕X轴(roll角),Y轴(pitch角),Z轴(yaw角)进行旋转。

旋转坐标系下的转动的角度为(\alpha ,\beta ,\gamma ),则在旋转坐标系下转动角度变化率为\left ( \dot{\alpha } ,\dot{\beta },\dot{\gamma }\right )

而我们需要的是旋转坐标系中物体在世界坐标系下的角速度,这就需要通过相关的旋转矩阵来进行组合转换。

相关公式

其中,对于每个转动轴的旋转矩阵为:

${​{R}_{z}}(\gamma )=\left[ \begin{matrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right]$

${​{R}_{y}}(\beta )=\left[ \begin{matrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \\ \end{matrix} \right]$

${​{R}_{x}}(\alpha )=\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \sin \alpha \\ \end{matrix} \right]$

总旋转矩阵为:

$R={​{R}_{z}}(\gamma ){​{R}_{y}}(\beta ){​{R}_{x}}(\alpha )=\left[ \begin{matrix} \cos \beta \cos \gamma & \sin \alpha \sin \beta \cos \gamma -\cos \alpha \sin \gamma & \cos \alpha \sin \beta \cos \gamma +\sin \alpha \sin \gamma \\ \cos \beta \sin \gamma & \sin \alpha \sin \beta \sin \gamma +\cos \alpha \cos \gamma & \cos \alpha \sin \beta \sin \gamma -\sin \alpha \cos \gamma \\ -\sin \beta & \sin \alpha \cos \beta & \cos \alpha \cos \beta \\ \end{matrix} \right]$

公式推导

角速度在世界坐标系下可以表示为

$w={​{w}_{x}}+{​{w}_{y}}+{​{w}_{z}}$

1.首先,绕着世界坐标系下的Z轴进行第一次旋转。

${​{w}_{x}}={​{R}_{z}}(\gamma )\left[ \begin{matrix} 0 \\ 0 \\ \overset{\bullet }{\mathop{\gamma }}\, \\ \end{matrix} \right]=\left[ \begin{matrix} 0 \\ 0 \\ 1 \\ \end{matrix} \right]\overset{\bullet }{\mathop{\gamma }}\,$

2.其次,绕世界坐标系下的Z轴进行旋转后,在绕y轴进行旋转,为右乘法。(从旋转坐标系来看,则是在旋转角度变化率的基础上先进行y 轴的旋转,然后在进行Z轴的旋转,为左乘法)。

${​{w}_{y}}={​{R}_{z}}(\gamma ){​{R}_{y}}(\beta )\left[ \begin{matrix} 0 \\ \overset{\bullet }{\mathop{\beta }}\, \\ 0 \\ \end{matrix} \right]=\left[ \begin{matrix} -\sin \gamma \\ \cos \gamma \\ 0 \\ \end{matrix} \right]\overset{\bullet }{\mathop{\beta }}\,$

3.最后,则是在前两次旋转的基础上在进行X轴的旋转。(在旋转坐标系下同理)

${​{w}_{x}}={​{R}_{z}}(\gamma ){​{R}_{y}}(\beta ){​{R}_{x}}(\alpha )\left[ \begin{matrix} 0 \\ \overset{\bullet }{\mathop{\alpha }}\, \\ 0 \\ \end{matrix} \right]=\left[ \begin{matrix} \cos \gamma \cos \beta \\ \cos \beta \sin \gamma \\ -\sin \beta \\ \end{matrix} \right]\overset{\bullet }{\mathop{\alpha }}\,$

  然后将三者进行相加,就可以得到角速度与角度变化率的关系:   

$w=\left[ \begin{matrix} \cos \gamma \cos \beta \\ \cos \beta \sin \gamma \\ -\sin \beta \\ \end{matrix}\begin{matrix} \text{ }\begin{matrix} -\sin \gamma \\ \cos \gamma \\ 0 \\ \end{matrix} & \begin{matrix} 0 \\ 0 \\ 1 \\ \end{matrix} \\ \end{matrix} \right]\left[ \begin{matrix} \overset{\bullet }{\mathop{\alpha }}\, \\ \overset{\bullet }{\mathop{\beta }}\, \\ \overset{\bullet }{\mathop{\gamma }}\, \\ \end{matrix} \right]$

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值