随着人工智能的技术的崛起,深度学习的概念开始流行起来,那么谈到深度学习就不得不提自动机器学习。可能还有许多人会问:什么是自动机器学习?它有哪些用处?下面就我们一起了解自动机器学习吧!
一、认识自动机器学习
1、自动机器学习的概念:
自动机器学习(AutoML) 旨在通过让一些通用步骤 (如数据预处理、模型选择和调整超参数) 自动化,来简化机器学习中生成模型的过程。AutoML是指尽量不通过人来设定超参数,而是使用某种学习机制,来调节这些超参数。这些学习机制包括传统的贝叶斯优化,多臂老虎机(multi-armed bandit),进化算法,还有比较新的强化学习。当我们提起AutoML时,我们更多地是说自动化数据准备(即数据的预处理,数据的生成和选择)和模型训练(模型选择和超参数调优)。这个过程的每一步都有非常多的选项(options),根据我们遇到的问题,需要设定各种不同的选项。
2、自动机器学习的分类:
1、传统AutoML
(1)贝叶斯优化
贝叶斯优化是一种近似逼近的方法,用各种代理函数来拟合超参数与模型评价之间的关系,然后选择有希望的超参数组合进行迭代,最后得出效果最好的超参数组合。
(2)Multi-armed Bandit
multi-armed bandit是非常经典的序列决策模型,要解决的问题是平衡“探索”(exploration)和“利用”(exploitation)。