一些板子~

 求最大公约数

int gcd(int a,int b)
{
    if(a % b == 0)return b;
    return gcd(b,a % b);
}

求最小公倍数

a/gcd(a,b)*b

求所有约数

int t=gcd(a,b);
    for(int i=1;i*i<=t;i++)
    {
        if(t%i==0) 
        {
            s[++idx]=i;
            if(i!=t/i) s[++idx]=t/i;
        }
    }

求所有质约数

for(int i=1;i<=t/i;i++)
{
    if(t%i==0) 
    {
        s[++idx]=i;
        while(t%i==0) t/=i;
    }
}
if(t>1) s[++idx]=t;

埃氏筛法O(nlog(log(n)))

const int N=1e5+10;
bool st[N],is_primes[N];
void get_primes(int n)
{
	for(int i=2;i<=n;i++)
	{
		if(st[i]==0) 
		{
			is_primes[i]=1;
			for(int j=1;j<=n/i;j++) st[j*i]=1;
		}
	}
}

线性筛O(n)

int primes[N],idx=0;
bool st[N];
void get_primes(int n)
{
	for(int i=2;i<=n;i++)
	{
		if(st[i]==0) primes[++idx]=i;
		for(int j=1;j<=idx;j++)
		{
			st[primes[j]*i]=1;
			if(i%primes[j]==0) break;
		}
	}
 } 

筛法求欧拉函数

int primes[N],idx=0;
bool st[N];
int ouler[N];
void get_primes(int n)
{
    ouler[1]=1;
	for(int i=2;i<=n;i++)
	{
		if(st[i]==0) 
        {
            primes[++idx]=i;
            ouler[i]=i-1;
        }
		for(int j=1;j<=idx;j++)
		{
			st[primes[j]*i]=1;
			if(i%primes[j]==0) 
            {
                ouler[primes[j]*i]=primes[j]*ouler[i];
                break;
            }
            ouler[primes[j]*i]=(primes[j]-1)*ouler[i];
		}
	}
 } 

快速幂

ll a,b,p;

ll qmi(ll a,ll b)
{
    ll res = 1 ;
    while (b)
    {
        if (b&1) res = ((res%p) * (a% p))%p;
        a = (a%p) * (a % p)%p;
        b >>= 1;
    }
    return res%p;

}

拓扑排序

#include<iostream>
#include<cstring>
 
using namespace std;
const int N=2e5+10;
int h[N],e[N],ne[N],idx,cnt[N],q[N];
int n,m;
void add(int a,int b){
    e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
bool top_sort(){
    int hh=0,tt=-1;
    for(int i=1;i<=n;i++){
        if(!cnt[i]){
            q[++tt]=i;
        }
    }
    while(hh<=tt){
        int t=q[hh++];
        for(int i=h[t];~i;i=ne[i]){
            int j=e[i];
            cnt[j]--;
            if(!cnt[j]) q[++tt]=j;
        }
    }
    return tt==n-1;
}
int main()
{
    cin>>n>>m;
    memset(h,-1,sizeof h);
    for(int i=0;i<m;i++){
        int a,b;
        cin>>a>>b;
        add(a,b);
        cnt[b]++;
    }
     
    if(top_sort()){
        for(int i=0;i<n-1;i++) cout<<q[i]<<" ";
        cout<<q[n-1]<<endl;
    }else cout<<-1<<endl;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值