【视觉SLAM】十四讲ch3习题

1、验证旋转矩阵是正交矩阵。


旋转矩阵(Rotate Matrix)的性质分析:该博客对于正交矩阵的性质做了良好叙述,在此引用此博客,不在过多赘述。

2、罗德里格斯公式的推导。


由于笔者查找的罗德里格斯公式的推导,符号都比较混乱,笔者重新书写一遍仅供参考。

笔者字迹实在潦草,感谢某只郭的誊抄。

3、验证四元数旋转某个点后,结果是一个虚四元数。


四元数旋转运算过程:该博客对于此题目做了良好叙述,在此引用此博客,不在过多赘述。

4、画表总结旋转矩阵、轴角、欧拉角、四元数的转换关系。


旋转矩阵、欧拉角、四元数、轴/角之间的转换:该博客对于此题目做了良好叙述,在此引用此博客,不在过多赘述。

5、假设有一个大的 Eigen矩阵,想把它的左上角3x3的块取出来,然后赋值为I3x3。请编写代码。

本题采用两种方法进行解答:


  1. 循环访问
  2. 使用.block()。

.block()块表达式既可以用作右值,也可以用作左值。具体操作请查看代码注释或者参考Eigen-Block块操作

Code

#include<iostream>
 
//包含Eigen头文件
#include<Eigen/Core>//Eigen核心模块
#include<Eigen/Geometry>//Eigen几何模块
 
#define MATRIX_SIZE 30//定义矩阵的大小
using namespace std;
 
int main(int argc,char **argv)
{
    //设置输出小数点后3位
    cout.precision(3);
    Eigen::Matrix<double,MATRIX_SIZE, MATRIX_SIZE> matrix_NN = Eigen::MatrixXd::Random(MATRIX_SIZE,MATRIX_SIZE);//生成随机数矩阵
    Eigen::Matrix<double,3,3>matrix_3d1 = Eigen::MatrixXd::Random(3,3);//3x3矩阵变量
    Eigen::Matrix3d matrix_3d = Eigen::Matrix3d::Random();//两种方式都可以
    /*方法1:循环遍历矩阵的三行三列   */
    for(int i = 0;i < 3; i ++)
    {
        for(int j = 0 ;j < 3;j++)
        {
            matrix_3d(i,j) = matrix_NN(i,j);
            cout<<matrix_NN(i,j)<<" ";
        }
              cout<<endl;
    }
    
    cout<<"赋值后的矩阵为:"<<endl<<matrix_3d<<endl;
 

    //方法2:用.block函数
    /*Eigen中最通用的块操作称为.block()。有两个版本,语法如下:

    |      块操作	                |       动态大小的块表达式	     |       固定大小块表达式
    |大小为(p, q)的块,从(i, j)开始	|    matrix.block(i, j, p, q);	 |   matrix.block < p, q >(i, j);*/
    /*这两个版本都可以用于固定大小和动态大小的矩阵和数组。
    这两个表达式在语义上是等价的。
    唯一的区别是,如果块大小很小,固定大小的版本通常会提供更快的代码,
    但需要在编译时知道这个大小。
    块表达式既可以用作右值,也可以用作左值
    */
 
    cout<<"提取出来的矩阵块为:"<<endl;
    cout<< matrix_NN.block(0,0,3,3)    <<endl;//matrix.block(i,j,p,q) 提取块大小为(p,q),起始于(i,j)	
 
    //提取后赋值为新的元素
    matrix_3d = matrix_NN.block(0,0,3,3);
    
    cout<<"赋值后的矩阵为:"<<endl<<matrix_3d;
 
    return 0;
}
 
 

CMake

cmake_minimum_required(VERSION 2.8)
project(Test)
 
set(CMAKE_BUILD_TYPE "Release")
set(CMAKE_CXX_FLAGS "-O3")
 
# 添加Eigen头文件
include_directories("/usr/include/eigen3")
add_executable(TestBlock TestBlock.cpp)

运行结果:

6、一般线性方程 Ax =b有哪几种做法?你能在 Eigen 中实现吗?



求解Ax=b有多种方法,本文介绍并采用Eigen展示常见的几种,例如Cholesky分解、SVD分解、LU分解、QR分解,雅克比(Jacobi)迭代法求解线性方程组。


Ax=b求解条件:

1、m < n, 欠定方程,有无穷多解

2、m = n,A非奇异,有唯一解;不可逆,无穷解或无解

3、m > n,超定方程,没有精确解,只有最小二乘解(Cholesky 分解、SVD分解、LU分解、QR分解),QR比SVD快,但SVD更准确。


本文仅采用Eigen方法进行测试,具体数学原理请参考YcoFlegs博主、兔子不吃草~博主的解答。


Eigen中的求解方法:

Note:

1.从速度上来看,Cholesky分解方法速度是最快的,并且精度较好,但其要求矩阵A是对称正定的;

2.精度最好最稳定的是SVD分解法,但求解速度慢;

3.LU分解和QR分解速度和精确性居中,但其要求矩阵A是满秩的。

上述Eigen分析参考了Ax=b常见解法对比


此外也可采用雅克比(Jacobi)迭代法求解线性方程组:

迭代法常用于求解大型稀疏矩阵,否则迭代法相较于直接法就没了优势;

迭代法适用于三对角方程组;

迭代法数学原理分析请参考:雅克比(Jacobi)迭代法求解线性方程组

Code

#include <iostream>
#include <ctime>
#include <cmath>
#include <complex>

/*线性方程组Ax = b的解法(直接法(1,2,3,4,5,6)+迭代法(7))
其中只有2 3 6方法不要求方程组个数与变量个数相等*/

#include <Eigen/Dense>
#include <Eigen/Core>
#include <Eigen/Geometry>
#include <Eigen/Eigenvalues>

#define MATRIX_SIZE 3
#define MATRIX_SIZE_ 3

using namespace std;

typedef Eigen::Matrix<double, MATRIX_SIZE, MATRIX_SIZE_> Mat_A;
typedef Eigen::Matrix<double, MATRIX_SIZE, 1> Mat_B;

double Jacobi_sum(Mat_A& A, Mat_B& B, int i);

Mat_B Jacobi(Mat_A   &A,Mat_B   &b,  int &iteration_num, double &accuracy );

int main(int argc, char** argv)
{
    //设置输出小数点后3位
    cout.precision(3);
    //初始化A  与 b;
    Mat_A matrix_NN = Eigen::MatrixXd::Random(MATRIX_SIZE, MATRIX_SIZE_);
    Mat_B v_Nd = Eigen::MatrixXd::Random(MATRIX_SIZE, 1);

    //测试用例
    matrix_NN << 10,3,1,2,-10,3,1,3,10;//测试所用矩阵A
    v_Nd <<14,-5,14;//测试所用向量b

    Mat_B x; 

    clock_t tim_stt = clock();

    /*1、求逆法	很可能没有解 仅仅针对可逆矩阵A才能计算*/
    #if (MATRIX_SIZE == MATRIX_SIZE_)
        x = matrix_NN.inverse() * v_Nd; // x = A(-1)b
        std::cout<<"直接法所用时间和解为:"<< 1000*(clock() - tim_stt)/(double)CLOCKS_PER_SEC
            <<"MS"<< std::endl << x.transpose() << std::endl;
    #endif

    /*2、QR分解解方程组	适合非方阵和方阵 当方程组有解时的出的是真解,
    若方程组无解得出的是近似解*/
    tim_stt = clock();
    x = matrix_NN.colPivHouseholderQr().solve(v_Nd);
    std::cout<<"QR分解所用时间和解为:"<<1000*(clock() - tim_stt)/(double)CLOCKS_PER_SEC
        << "MS" << std::endl << x.transpose() << std::endl;   
    
    /*3、最小二乘法	适合非方阵和方阵,方程组有解时得出真解,
    否则是最小二乘解(在求解过程中可以用QR分解 分解最小二成的系数矩阵) */
   tim_stt = clock();
   //x=(A(T) * A)(-1) *( A(T) * b)
   x = (matrix_NN.transpose() * matrix_NN).inverse() * (matrix_NN.transpose() * v_Nd); 
    std::cout<<"最小二乘法所用时间和解为:"<< 1000*(clock() - tim_stt)/(double)CLOCKS_PER_SEC
        << "MS" << std::endl  << x.transpose() << std::endl; 

    /*4、LU分解方法	只能为方阵(满足分解的条件才行)    */
    
    #if (MATRIX_SIZE == MATRIX_SIZE_)
        tim_stt = clock();
        x = matrix_NN.lu().solve(v_Nd);//LU分解matrix_NN.lu()
            std::cout<< "LU分解方法所用时间和解为:" << 1000*(clock() - tim_stt)/(double)CLOCKS_PER_SEC
        << "MS" << std::endl << x.transpose() << std::endl;
    #else
            std::cout<<"LU分解法不能解!(提示:直接法中方程组的个数必须与变量个数相同,需要设置MATRIX_SIZE == MATRIX_SIZE_)"<<std::endl;
    #endif

     /*5、Cholesky	分解方法  只能为方阵 (结果与其他的方法差好多)*/
    #if (MATRIX_SIZE == MATRIX_SIZE_)
        tim_stt = clock();
        x = matrix_NN.llt().solve(v_Nd);//Cholesky分解matrix_NN.llt()
         std::cout<< "Cholesky 分解方法所用时间和解为:" << 1000*(clock() - tim_stt)/(double)CLOCKS_PER_SEC
            << "MS"<< std::endl<< x.transpose()<<std::endl;
    #endif

    /*SVD分解法,适合非方阵和方阵 (结果与其他的方法差好多)*/
    tim_stt = clock();
    x = matrix_NN.jacobiSvd().solve(v_Nd);
    std::cout<< "SVD_jacobi分解方法所用时间和解为:" << 1000*(clock() - tim_stt)/(double)CLOCKS_PER_SEC
            << "MS"<< std::endl<< x.transpose()<<std::endl;
    
    tim_stt = clock();
    x = matrix_NN.bdcSvd().solve(v_Nd);
    std::cout<< "SVD_bdc分解方法所用时间和解为:" << 1000*(clock() - tim_stt)/(double)CLOCKS_PER_SEC
            << "MS"<< std::endl<< x.transpose()<<std::endl;

    /*7、Jacobi迭代法  */
    #if (MATRIX_SIZE == MATRIX_SIZE_)
        int Iteration_num = 10 ;//迭代次数
        double Accuracy =0.01;//精度
        tim_stt = clock();
        x= Jacobi(matrix_NN,v_Nd,Iteration_num,Accuracy);
        std::cout<< "Jacobi 迭代法所用时间和解为:" << 1000*(clock() - tim_stt)/(double)CLOCKS_PER_SEC
            << "MS"<< std::endl<< x.transpose()<<std::endl;
    #else
        std::cout<<"Jacobi迭代法不能解!(提示:直接法中方程组的个数必须与变量个数相同,需要设置MATRIX_SIZE == MATRIX_SIZE_)"<<std::endl;
    #endif

    return 0;
}
 
 //迭代不收敛的话 解向量是0
Mat_B Jacobi(Mat_A  &A,Mat_B  &b, int &iteration_num, double &accuracy ) {
    Mat_B x_k = Eigen::MatrixXd::Zero(MATRIX_SIZE_,1);//迭代的初始值
    Mat_B x_k1;         //迭代一次的解向量
    int k,i;            //i,k是迭代算法的循环次数的临时变量
    double temp;        //每迭代一次解向量的每一维变化的模值
    double R=0;         //迭代一次后,解向量每一维变化的模的最大值
    int isFlag = 0;     //迭代要求的次数后,是否满足精度要求
 
    //判断Jacobi是否收敛
    Mat_A D;            //D矩阵
    Mat_A L_U;          //L+U
    Mat_A temp2 = A;    //临时矩阵获得A矩阵除去对角线后的矩阵
    Mat_A B;            //Jacobi算法的迭代矩阵
    Eigen::MatrixXcd EV;//获取矩阵特征值
    double maxev=0.0;   //最大模的特征值
    int flag = 0;       //判断迭代算法是否收敛的标志 1表示Jacobi算法不一定能收敛到真值
 
    std::cout<<std::endl<<"欢迎进入Jacobi迭代算法!"<<std::endl;
    //對A矩陣進行分解 求取迭代矩陣 再次求取譜半徑 判斷Jacobi迭代算法是否收斂
    for(int l=0 ;l < MATRIX_SIZE;l++){
        D(l,l) = A(l,l);
        temp2(l,l) = 0;
        if(D(l,l) == 0){
            std::cout<<"迭代矩阵不可求"<<std::endl;
            flag =1;
            break;
        }
    }
    L_U = -temp2;
    B = D.inverse()*L_U;
 
    //求取特征值
    Eigen::EigenSolver<Mat_A>es(B);
    EV = es.eigenvalues();
//    cout<<"迭代矩阵特征值为:"<<EV << endl;
 
    //求取矩陣的特征值 然後獲取模最大的特徵值 即爲譜半徑
    for(int index = 0;index< MATRIX_SIZE;index++){
        maxev = ( maxev > __complex_abs(EV(index)) )?maxev:(__complex_abs(EV(index)));
    }
    std::cout<< "Jacobi迭代矩阵的谱半径为:"<< maxev<<std::endl;
 
    //谱半径大于1 迭代法则发散
    if(maxev >= 1){
        std::cout<<"Jacobi迭代算法不收敛!"<<std::endl;
        flag =1;
    }
 
    //迭代法收敛则进行迭代的计算
    if (flag == 0 ){
        std::cout<<"Jacobi迭代算法谱半径小于1,该算法收敛"<<std::endl;
        std::cout<<"Jacobi迭代法迭代次数和精度: "<< std::endl << iteration_num<<" "<<accuracy<<std::endl;
 
        //迭代计算
        for( k = 0 ;k < iteration_num ; k++ ){
            for(i = 0;i< MATRIX_SIZE_ ; i++){
                x_k1(i) = x_k(i) + ( b(i) - Jacobi_sum(A,x_k,i) )/A(i,i);
                temp = fabs( x_k1(i) - x_k(i) );
                if( fabs( x_k1(i) - x_k(i) ) > R )
                    R = temp;
            }
 
            //判断进度是否达到精度要求 达到进度要求后 自动退出
            if( R < accuracy ){
                std::cout <<"Jacobi迭代算法迭代"<< k << "次达到精度要求."<< std::endl;
                isFlag = 1;
                break;
            }
 
            //清零R,交换迭代解
            R = 0;
            x_k = x_k1;
        }
        if( !isFlag )
            std::cout << std::endl <<"迭代"<<iteration_num<<"次后仍然未达到精度要求,若不满意该解,请再次运行加大循环次数!"<< std::endl;
        return x_k1;
    }
    //否则返回0
    return  x_k;
}
 
//Jacobi迭代法的一步求和计算
double Jacobi_sum(Mat_A  &A,Mat_B &x_k,int i) {
    double sum;
    for(int j = 0; j< MATRIX_SIZE_;j++){
        sum += A(i,j)*x_k(j);
    }
    return sum;
}

该代码参考了博客视觉slam十四讲课后习题ch3-6

CMake

cmake_minimum_required(VERSION 2.8)
project(homework1)
 
set(CMAKE_BUILD_TYPE "Release")
set(CMAKE_CXX_FLAGS "-O3")
 
# 添加Eigen头文件
include_directories("/usr/include/eigen3")
add_executable(TestAbX TestAbX.cpp)

运行结果:

可见各算法与上述分析耗时一致,但SVD分解法、Cholesky分解法  结果与其他的方法差距较大。具体原因仍在思考,大佬经过请指教。

  • 25
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值