自然语言处理(Natural Language Processing,简称NLP)是人工智能领域的一个重要分支,致力于使计算机能理解、解析和生成人类语言。NLP融合了计算机科学、语言学和数学等多学科知识,通过算法和模型来解析和生成文本,以模拟人类语言的理解和表达能力。
NLP的关键任务与技术发展
关键任务
-
文本分析:包括分词、词性标注、命名实体识别、依存句法分析等,旨在理解文本的结构与含义。
-
情感分析:评估文本中的情绪色彩,如正面、负面或中立。
-
机器翻译:实现不同语言间的自动翻译。
-
问答系统:构建智能系统,回答用户提出的各种问题。
-
聊天机器人:开发能与人类进行自然对话的虚拟助手。
-
语音识别与合成:将声音转换为文字,或将文字转换为语音。
-
文本生成:依据给定条件自动生成文章、新闻或故事。
-
文档摘要:自动提炼文档核心信息。
-
信息抽取:从文本中自动提取结构化数据。 技术演进 • 基于规则的方法:依赖预设规则,如正则表达式,进行语言分析。 • 统计方法:利用概率模型和大规模语料库,如HMM和最大熵模型。 • 深度学习方法:引入神经网络,特别是RNN、LSTM、GRU和Transformer,以处理更复杂的语言结构。
-
应用场景
NLP技术广泛应用在社交媒体分析、客户服务自动化、智能写作、医疗记录解析、法律文件审查、教育辅助和市场情报等领域,极大地丰富了人机交互的维度和深度。