一、项目背景与意义
在智慧农业快速发展的背景下,植物病虫害的智能化识别成为提高农业生产效率的关键。传统人工识别方式存在效率低、专业要求高等问题,本文基于深度学习技术,使用PyTorch框架构建高效识别模型,结合Django+Vue.js实现完整Web应用系统。
二、技术架构设计
技术栈选择:
- 深度学习框架:PyTorch 2.0
- 后端框架:Django 4.2 + Django REST Framework
- 前端框架:Vue3 + Element Plus
- 数据库:MySQL 8.0 + Redis 7.0
- 部署环境:Docker + Nginx
三、核心代码实现
3.1 数据准备与增强
使用PlantVillage公开数据集(包含38类植物病害)
from torchvision import transforms
from torch.utils.data import DataLoader
train_transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(20),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
train_dataset = datasets.ImageFolder('dataset/train', transform=train_transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
3.2 改进的ResNet模型
import torch.nn as nn
from torchvision.models import resnet50
class PlantDiseaseMode