基于深度学习的植物病虫害识别系统开发全流程详解

一、项目背景与意义

在智慧农业快速发展的背景下,植物病虫害的智能化识别成为提高农业生产效率的关键。传统人工识别方式存在效率低、专业要求高等问题,本文基于深度学习技术,使用PyTorch框架构建高效识别模型,结合Django+Vue.js实现完整Web应用系统。

二、技术架构设计

在这里插入图片描述

技术栈选择:

  • 深度学习框架:PyTorch 2.0
  • 后端框架:Django 4.2 + Django REST Framework
  • 前端框架:Vue3 + Element Plus
  • 数据库:MySQL 8.0 + Redis 7.0
  • 部署环境:Docker + Nginx

三、核心代码实现

3.1 数据准备与增强

使用PlantVillage公开数据集(包含38类植物病害)

from torchvision import transforms
from torch.utils.data import DataLoader

train_transform = transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.RandomRotation(20),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

train_dataset = datasets.ImageFolder('dataset/train', transform=train_transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)

3.2 改进的ResNet模型

import torch.nn as nn
from torchvision.models import resnet50

class PlantDiseaseMode
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值