基于局部模型融合的交互式电影推荐系统

本文提出了一种基于局部模型融合的交互式电影推荐系统RecVis,利用LDA和SLIM模型结合用户标签信息,提供个性化推荐。系统通过用户画像和交互推荐模块提高用户理解和参与度,通过实验验证了推荐的有效性,同时通过用户测试证明了系统的易用性和满意度。
摘要由CSDN通过智能技术生成

摘     要

【目的】设计并实现一个交互式可视推荐系统,帮助用户理解推荐结果的产生原因,提高使用体验以及对推荐系统的信任。

【方法】从用户历史观影标签集合中提取用户偏好特征,通过LDA模型基于此特征对用户进行聚类,并利用SLIM模型对不同用户子群分别训练局部模型,最后利用训练过程的上下文语义信息设计和实现最终的交互式电影推荐系统。

【结果】设计了一个交互式的电影推荐系统RecVis,能够可视化推荐原因和用户画像,向用户提供推荐解释和交互反馈功能,以及实时获得根据其交互反馈的感兴趣的最新推荐结果。

【结论】通过豆瓣电影数据集的测试,证明了该系统在推荐方面的有效性,并通过一系列案例分析验证了RecVis能够帮助用户理解推荐结果,增加对推荐系统的信任。

关键词:模型融合;稀疏线性模型;主题模型;用户画像;交互式推荐

 

引 言

中国已成为全球最大的电影市场,每年有成百上千部影视新作。由于人们对电影有着各自的喜好,为不同的人推荐适宜的电影对于观众与电影推广方都是一件重要而有意义的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

米朵儿技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值