摘要: 密度峰值聚类算法具有简单高效、无需迭代计算和提前设定类簇数的优势,但是在划分非类中心样本时容易产生“多米诺骨牌”效应,并且不能准确划分重叠区域的样本和噪声。为了解决以上问题,提出了不确定数据信任密度峰值聚类算法。首先,该算法在密度峰值聚类算法获取类中心样本的基础上,利用非类中心样本的K近邻求出样本属于不同类的信任值,将样本划分到信任值最大的类别,得到基于K近邻的初步聚类结果。然后,计算关于密度的上分位数得到密度阈值,在证据推理框架下进行信任划分,将密度小于该阈值的孤立样本划分到噪声类;处于重叠部分的样
不确定数据信任密度峰值聚类算法
最新推荐文章于 2024-11-08 09:27:49 发布
本文提出了一种不确定数据信任密度峰值聚类算法(BDPC),旨在解决密度峰值聚类算法在处理非类中心样本时的“多米诺骨牌”效应和重叠区域样本划分问题。BDPC算法结合K近邻思想计算信任值,通过证据推理框架进行信任划分,有效地处理噪声和重叠样本。实验表明,BDPC算法在人工数据集和UCI数据集上相对于其他对比算法,如DPCSA、DPC-KNN-PCA、DPC,取得了更好的聚类性能,降低了错误率。
摘要由CSDN通过智能技术生成