基于深度学习的多用户Massive MIMO预编码方法

本文介绍了一种基于深度学习的Massive MIMO预编码方法,以解决传统WMMSE算法计算复杂度高的问题。通过训练神经网络,实现接近WMMSE算法90%以上的性能,同时显著降低计算复杂度和时延。实验表明,这种方法在不同用户和天线数量下表现稳定,且相比于WMMSE,计算速度更快。
摘要由CSDN通过智能技术生成

【摘  要】在下行链路传输场景中,发射机处的功率分配和波束赋形设计至关重要。考虑一个多用户Massive MIMO系统中总功率约束下最大化加权和速率问题,经典的WMMSE算法可以获取次优解,但计算复杂度过高。为了降低计算复杂度,提出了一种基于深度学习的快速波束赋形设计方法,该方法可以离线训练深度神经网络,利用训练后的神经网络求解最优波束赋形解,只需要简单的线性和非线性操作即可完成。实验结果显示,该方法可以逼近WMMSE算法精度的90%以上,同时计算复杂度和时延也大大降低。

【关键词】Massive MIMO;预编码;WMMSE;深度学习

0   引言

Massive MIMO是第五代移动通信(5G)的核心技术之一,在提高系统容量和频谱利用率方面起着至关重要的作用[1-2]。在Massive MIMO系统中,设计实时性强、效率高的资源分配算法是一个非常重要的研究方向,特别是在下行传输链路的预编码问题中。传统的基于优化和迭代的预编码算法收敛速度较慢,计算复杂度高[3],无法满足5G及以上系统实时应用的需求,如自动驾驶车辆和关键任务通信等。即使在毫秒级变化的小范围衰落非实时应用程序中,迭代过程引入的延迟也会使波束赋形解决方案难以满足通信需求。

近年来深度学习࿰

软件程序按照发射端所掌握的各用户信道状态信息的程度共分为两部分:即完整信道状态信息(CSIT)和部分信道状态信息(CSIP)。其中,每一部分都包括预编码(precoding)和用户调度(scheduling)。 在CSIT中,precoding又按照各用户的数据流数分为单数据流和多数据流两种情况。在每种情况下,首先考察了不同预编码算法的性能表现,包括两种ZF、MMSE、SINR、SLNR。之后又考察了功率分配算法的性能表现(文件名中含有PD表明其含有功率分配的过程)。按照不同指标进行功率分配的,在文件名中进行了区分,如PD_CN代表以信道范数为参考指标进行功率分配。Scheduling部分首先观察了RoundRobin、MaxH和MMSLNR三种算法的性能对比。之后在Kc和Round部分分别观察了不同预选用户数和不同最大替换轮数下MMSLNR算法的表现。 在CSIP中,只对各用户单数据流的情况进行了仿真。采用的预编码算法主要有DSLNR(即直接运用CSIT下的预编码算法)、ESLNR(即对SLNR进行均值计算的,在CSIP中,引入均值计算的与SLNR有关的算法,其文件名中都有modified以示区别)、EMMSE(即陈明老师那边的那篇文章中的预编码算法)。Scheduling中也只是简单的观察了RoundRobin、MaxH、DMMSLNR和EMMSLNR(前者没有均值计算,后者有)的性能对比。 在各部分程序中,main以及mainX(X代表某一数字)是最终的主程序,且各种参数均在主程序的开头部分进行了说明。主程序中,都是按照信号生成,信道生成,调度与预编码,信号接收这样的过程进行的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

米朵儿技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值