3D Gaussian Spaltting代码复现全流程与代码结构解读

本文详细介绍了如何在Ubuntu18.04上复现并配置3DGaussianSplatting的代码,包括CUDA版本管理、虚拟环境创建、依赖库安装,以及如何在Windows10上使用SIBR_viewers进行模型可视化。该方法利用3D高斯点云实现实时渲染场渲染并进行参数优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、代码复现流程

以下部分将详细介绍3D Gaussian splatting的代码复现流程(在ubuntu18.04上训练模型,在windows10上使用SIBR_viewers查看)

1、首先在GitHub - graphdeco-inria/gaussian-splatting: Original reference implementation of "3D Gaussian Splatting for Real-Time Radiance Field Rendering"上下载3D Gaussian Spaltting代码。

其中两个子模块分别位于GitHub - graphdeco-inria/diff-gaussian-rasterization at 59f5f77e3ddbac3ed9db93ec2cfe99ed6c5d121d

### 复现3DGS代码于服务器上的方法 #### 准备环境 为了成功复现3DGS代码,在服务器环境中需先安装必要的依赖库和工具。这通常涉及配置Python版本以及特定的数据处理包,如NumPy, Pandas等[^1]。 对于操作系统层面的支持,建议使用Linux发行版作为首选平台,因为大多数机器学习框架在此类系统上有更好的兼容性和性能表现[^2]。 #### 获取源码 访问官方GitHub仓库或其他托管站点下载最新的稳定版3DGS项目文件。确保获取的是适用于当前需求的分支或标签版本[^3]。 #### 安装依赖项 通过`requirements.txt`来管理外部依赖关系是一个常见的做法。可以利用pip命令批量安装所需的Python模块: ```bash pip install -r requirements.txt ``` 如果遇到权限问题,则可能需要加上`--user`参数或者考虑创建虚拟环境来进行隔离化部署[^4]。 #### 配置运行参数 仔细阅读文档中的说明部分,了解启动脚本的位置及其接受哪些输入选项。某些情况下还需要调整配置文件内的路径设置以便适应本地存储结构[^5]。 #### 执行程序 最后一步就是实际执行该应用程序了。一般会有一个入口点(entry point),比如main.py这样的主函数文件。可以通过如下方式调用它: ```python if __name__ == "__main__": main() ``` 当然也可以直接从命令行界面运行整个过程: ```bash python path/to/main_script.py [arguments] ``` 以上步骤完成后应该能够在目标服务器上顺利重现3DGS的功能特性[^6]。
评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值