对4D Gaussian Splatting论文思想与代码的讨论
一:介绍
此文是对论文4D Gaussian Splatting for Real-Time Dynamic Scene Rendering[1]中的思想与相关代码的简单讨论,其中一些部分是个人浅薄的理解,欢迎有不同看法的读者在评论区留言。这是来自华中科技大学最近关于3DGS领域的一个工作,具体内容见4dgs,主要贡献在于将3DGS引申到了针对动态场景的重建领域,参考了一些动态NeRF领域中HexPlane、K-Planes[2,3]中的思想,创新性地提出了高斯变形场的模型,在减小模型体积的同时提高了模型渲染速度。下面为4DGS模型的主要结构:
下面分享一下我个人对于这个模型的一些理解:
先从3DGS开始说起,3DGS的作用是建立了一个显式的模型来表示整个3D空间,有点类似点云模型,但是给每个xyz点加上了3DGS特征来表示其所占据的体积,并且使用了不透明度与SH球谐函数来表示该点位置处的不透明度与光照特征,最后使用传统计算机图形学中的splatting方法渲染得到特定观测位置处的二维图像。在这个模型中,每个点的3DGS特征与不透明度还有SH系数均为待优化的变量,在训练过程中使用pytorch的梯度反向传播框架进行优化。3DGS是一个关于3D图像的纯显式的模型,具有很好的可解释性,与NeRF