有关4D Gaussian Splatting论文思想与代码的讨论

本文讨论了华中科技大学的研究工作,4DGaussianSplatting,它扩展了3DGS到动态场景重建,利用高斯变形场模型减小体积并加速渲染。文章介绍了模型原理,特别是时空结构编码器和高斯变形解码器的应用。4DGS在处理动态场景生成方面表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对4D Gaussian Splatting论文思想与代码的讨论

一:介绍

​ 此文是对论文4D Gaussian Splatting for Real-Time Dynamic Scene Rendering[1]中的思想与相关代码的简单讨论,其中一些部分是个人浅薄的理解,欢迎有不同看法的读者在评论区留言。这是来自华中科技大学最近关于3DGS领域的一个工作,具体内容见4dgs,主要贡献在于将3DGS引申到了针对动态场景的重建领域,参考了一些动态NeRF领域中HexPlane、K-Planes[2,3]中的思想,创新性地提出了高斯变形场的模型,在减小模型体积的同时提高了模型渲染速度。下面为4DGS模型的主要结构:
在这里插入图片描述

下面分享一下我个人对于这个模型的一些理解:

​ 先从3DGS开始说起,3DGS的作用是建立了一个显式的模型来表示整个3D空间,有点类似点云模型,但是给每个xyz点加上了3DGS特征来表示其所占据的体积,并且使用了不透明度与SH球谐函数来表示该点位置处的不透明度与光照特征,最后使用传统计算机图形学中的splatting方法渲染得到特定观测位置处的二维图像。在这个模型中,每个点的3DGS特征与不透明度还有SH系数均为待优化的变量,在训练过程中使用pytorch的梯度反向传播框架进行优化。3DGS是一个关于3D图像的纯显式的模型,具有很好的可解释性,与NeRF

### 实现在 PyCharm 中运行 3DGS 代码的方法 为了在 PyCharm 中成功实现并运行 3DGS (Three-Dimensional Geophysical Software) 的代码,需遵循特定配置流程[^1]。 #### 安装必要的库 确保安装了所有必需的 Python 库。对于大多数地理物理应用来说,这通常包括 NumPy, SciPy 和 Matplotlib 等科学计算包。可以通过命令行工具 pip 来完成这些依赖项的安装: ```bash pip install numpy scipy matplotlib ``` 如果项目有额外需求,则应按照官方文档中的说明来增加其他所需的软件包。 #### 配置开发环境 启动 PyCharm 后,在创建新工程时选择合适的解释器版本,并确认已正确设置工作路径指向包含源文件的位置。接着可以导入现有的 3DGS 工程或者手动建立一个新的Python模块用于编写自定义脚本[^2]。 #### 编写和调试代码 利用 PyCharm 内建的强大编辑功能,如语法高亮显示、自动补全以及实时错误检测等功能辅助编码过程;同时借助其集成式的调试工具来进行程序测试优化操作。当遇到具体技术难题时可查阅相关 API 文档获取帮助信息[^3]。 #### 运行可视化结果 最后一步就是执行编写的 Python 脚本来展示三维地质模型或其他形式的数据分析成果。Matplotlib 或 Mayavi 是两个常用的绘图库选项,它们能够提供丰富的图形渲染能力支持复杂场景下的视觉呈现效果[^4]。 ```python import numpy as np from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt def plot_3d_surface(x, y, z): fig = plt.figure() ax = fig.add_subplot(111, projection='3d') X, Y = np.meshgrid(x, y) surf = ax.plot_surface(X, Y, Z=z) plt.show() # 假设这里已经准备好数据集 x,y,z... plot_3d_surface([0,1],[0,1], [[0,0],[0,1]]) ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值