包饺子中的数学

文章通过数学模型探讨了如何在馅多面不变的情况下,通过调整饺子大小来包完所有馅。作者假设饺子形状和厚度一致,利用体积和表面积的关系得出结论:选择包大饺子可以包更多的馅。如果100个饺子包1kg馅,50个大饺子则能包相同量的馅。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

问题引入

用数学语言表示现实对象

做出简化、合理假设

利用问题蕴含的内在规律

结论


问题引入

通常,你家用1kg面和1kg馅包100个饺子。某次,馅做多了而面没有变,为了把馅全包完,问应该让每个饺子小一些,多包几个,还是每个饺子大一些,少包几个?如果回答是包大饺子,那么如果100个饺子能包1kg 馅,问50个饺子可以包多少馅呢?

用数学语言表示现实对象

用物体的体积和表面积分别表示大饺子馅的体积和面皮的面积,分别表示小饺子馅的体积和面皮面积。

大饺子和小饺子面皮面积满足以下关系:

所以,问题转换为的系数关系(注意:这里n与上式相同)

做出简化、合理假设

  1. 所有饺子皮厚度一样
  2. 所有饺子形状一样

利用问题蕴含的内在规律

体积和表面积通过半径联系起来

设大饺子半径为,小饺子半径为

所以

在所有饺子形状一样的情况下,k1和k2相同,化简得 

消去 得 

结论

V大于nv,说明大饺子包的馅多,所以馅做多了而面没有变,为了把馅全包完,应该让每个饺子大一些,少包几个。

如果100个饺子能包1kg 馅,则50个饺子能包

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值