【分解定理】截集与强截集2

【分解定理】截集与强截集

截集:A_\lambda=\{x\in X|\underset{\sim}A(x)\geqslant\lambda\}

强截集:A_{\underset{\cdot}\lambda}=\{x\in X|\underset{\sim}A(x)> \lambda\}

 

性质

\underset{\sim}A= \in \mathcal F(X)I \in I\lambda _i \in [0,1]I为任意指标集,且\alpha = \bigvee_{i \in I} \lambda _i\beta = \bigwedge_{i \in I} \lambda _i则:

1.A_\alpha = \bigcap_{i \in I} A_{\lambda _i}

2.A_{\underset{\cdot}\beta} = \bigcup_{i \in I} A_{\underset{\cdot}{\lambda _i}}

对1.

\begin{aligned}x\in A_\alpha&\Longleftrightarrow \underset{\sim}A(x)\geqslant\alpha=\vee_{i\in I}\lambda_i\\&\Longleftrightarrow\forall i\in I,\underset{\sim}A(x)\geqslant\lambda_i\\&\Longleftrightarrow\forall i\in I,x\in A_{\lambda_i}\\&\Longleftrightarrow x{\in}\cap_{i\in I}A_{\lambda_i}.\end{aligned}

2.同理

  

关系

\underset{\sim}A= \in \mathcal F(X)\lambda \in [0,1],则

1.{\operatorname*{(}}\underset{\sim}A^{\mathrm{c}})_{\lambda}=(A_{\underset{\cdot}{1-\lambda}})^{\mathrm{c}}

2.{\operatorname*{(}}\underset{\sim}A^{\mathrm{c}})_{\underset{\cdot}\lambda}=(A_{​{1-\lambda}})^{\mathrm{c}}

上式刻画截集与强截集间的关系

对1.

\begin{aligned} x\in\left(\underset{\sim}A^{c}\right)\lambda & \iff(A^{\mathrm{c}})(x)\geqslant\lambda\Longleftrightarrow1-\underset{\sim}A(x)\geqslant\lambda \\ &\Longleftrightarrow \underset{\sim}A(x)\leqslant1-\lambda\Longleftrightarrow x\notin A_{\underset{\cdot}{1-\lambda}} \\ &\Longleftrightarrow x\in(A_{\underset{\cdot}{1-\lambda}})^\mathrm{c}. \end{aligned}

2.同理

  • 4
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
该资源内项目源码是个人的课程设计、毕业设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 该资源内项目源码是个人的课程设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。
在数论中,唯一分解定理(Unique Factorization Theorem)也被称为质因数分解定理,它指出每个大于1的整数都可以唯一地表示为质数的乘积。在Python中,我们可以使用以下方法来实现唯一分解定理: 1. 首先,我们可以编写一个函数来判断一个数是否为质数。一个简单的方法是从2开始,逐个判断该数是否能被小于它的数整除,如果能整除,则不是质数。 2. 接下来,我们可以编写一个函数来获取一个数的所有质因数。我们可以从2开始,逐个判断该数是否能被2整除,如果可以,则将2添加到质因数列表中,并将该数除以2。然后再继续判断是否能被3整除,如果可以,则将3添加到质因数列表中,并将该数除以3。依此类推,直到该数变为1为止。 3. 最后,我们可以编写一个函数来实现唯一分解定理。该函数将调用上述获取质因数的函数,并将质因数列表返回。 下面是一个示例代码: ```python def is_prime(n): if n <= 1: return False for i in range(2, int(n**0.5) + 1): if n % i == 0: return False return True def get_prime_factors(n): factors = [] i = 2 while n > 1: if n % i == 0: factors.append(i) n //= i else: i += 1 return factors def unique_factorization(n): if n <= 1: return [] prime_factors = get_prime_factors(n) return prime_factors # 示例用法 number = 36 factors = unique_factorization(number) print(f"唯一分解定理:{number} = {' × '.join(map(str, factors))}") ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

F_D_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值