1、定义
模糊集的入截集
A
λ
A_\lambda
Aλ.是一个经典集合,由隶属度不小于
λ
λ
λ的成员构成.它的特征函数为
χ
A
λ
(
x
)
=
{
1
,
A
(
x
)
⩾
λ
0
,
A
(
x
)
<
λ
\chi_{A_{\lambda}}(x)=\left\{\begin{array}{ll} 1, & A(x) \geqslant \lambda \\ 0, & A(x)<\lambda \end{array}\right.
χAλ(x)={1,0,A(x)⩾λA(x)<λ
- 例1:设论域 U U U表示学生,他们某门功课的分数依次是50, 60,70,85,90,95. A = “ 学 习 成 绩 好 的 学 生 ” A=“学习成绩好的学生” A=“学习成绩好的学生”,他们所得的分数除以100后,即为各自对 A A A的隶属度,即
A = 0.5 u 1 + 0.6 u 2 + 0.7 u 3 + 0.85 u 4 + 0.9 u 5 + 0.95 u 6 A=\frac{0.5}{u_{1}}+\frac{0.6}{u_{2}}+\frac{0.7}{u_{3}}+\frac{0.85}{u_{4}}+\frac{0.9}{u_{5}}+\frac{0.95}{u_{6}} A=u10.5+u20.6+u30.7+u40.85+u50.9+u60.95
要糊定“学习成绩好的学生”实际上就是要将模糊集
A
A
A转化为经典集合,即先确定一个阈值
λ
(
0
≤
1
≤
1
)
λ (0≤1≤1)
λ(0≤1≤1),然后将隶属度
A
(
r
)
≥
λ
A(r)≥λ
A(r)≥λ的元素找出来,当
λ
λ
λ取0.9,0.8, 0.6, 0.5时:
A
0.9
(
90
分以上者
)
=
{
u
5
,
u
6
}
,
A
0.8
(
80
分以上者
)
=
{
u
4
,
u
5
,
u
6
}
A
0.6
(
60
分以上者
)
=
{
u
2
,
u
3
,
u
4
,
u
5
,
u
6
}
,
A
0.5
(
50
分以上者
)
=
{
u
1
,
u
2
,
u
3
,
u
4
,
u
5
,
u
6
}
\begin{array}{l} A_{0.9}(90 \text { 分以上者 })=\left\{u_{5}, u_{6}\right\}, \\ A_{0.8}(80 \text { 分以上者 })=\left\{u_{4}, u_{5}, u_{6}\right\} \\ A_{0.6}(60 \text { 分以上者 })=\left\{u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}, \\ A_{0.5}(50 \text { 分以上者 })=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\} \end{array}
A0.9(90 分以上者 )={u5,u6},A0.8(80 分以上者 )={u4,u5,u6}A0.6(60 分以上者 )={u2,u3,u4,u5,u6},A0.5(50 分以上者 )={u1,u2,u3,u4,u5,u6}
- 例2: A ( x ) = exp [ 1 − ( x − a ) 2 σ 2 ] A(x)=\exp \left[1-\frac{(x-a)^{2}}{\sigma^{2}}\right] A(x)=exp[1−σ2(x−a)2],求 A λ ( 0 < λ ≤ 1 ) A_\lambda(0<\lambda \leq 1) Aλ(0<λ≤1)
A ( x ) ⩾ λ ⇔ − ( x − a ) 2 σ 2 ⩾ ln λ ⇔ ( x − a ) 2 ⩽ − σ 2 ln λ ⇔ a − − σ 2 ln λ ⩽ x ⩽ a + − σ 2 ln λ \begin{aligned} A(x) \geqslant \lambda & \Leftrightarrow-\frac{(x-a)^{2}}{\sigma^{2}} \geqslant \ln \lambda \\ & \Leftrightarrow(x-a)^{2} \leqslant-\sigma^{2} \ln \lambda \\ & \Leftrightarrow a-\sqrt{-\sigma^{2} \ln \lambda} \leqslant x \leqslant a+\sqrt{-\sigma^{2} \ln \lambda} \end{aligned} A(x)⩾λ⇔−σ2(x−a)2⩾lnλ⇔(x−a)2⩽−σ2lnλ⇔a−−σ2lnλ⩽x⩽a+−σ2lnλ
因此
A
λ
=
{
x
∣
a
−
−
σ
2
ln
λ
⩽
x
⩽
a
+
−
σ
2
λ
}
A_{\lambda}=\left\{x \mid a-\sqrt{-\sigma^{2} \ln \lambda} \leqslant x \leqslant a+\sqrt{-\sigma^{2} \lambda}\right\} \\
Aλ={x∣a−−σ2lnλ⩽x⩽a+−σ2λ}
或
A
λ
=
[
a
−
−
σ
2
ln
λ
,
a
+
−
σ
2
ln
λ
]
A_{\lambda}=[a-\sqrt{-\sigma^{2} \ln \lambda}, a+\sqrt{-\sigma^{2} \ln \lambda}]
Aλ=[a−−σ2lnλ,a+−σ2lnλ]
2、性质
A ⊆ B ⇒ A 2 ⊆ B 2 μ ⩽ λ ⇒ A μ ⊆ A λ ( A ∪ B ) λ = A λ ∪ B λ , ( A ∩ B ) λ = A λ ∩ B λ A \subseteq B \Rightarrow A_{2} \subseteq B_{2} \\ \mu \leqslant \lambda \Rightarrow A_{\mu} \subseteq A_{\lambda} \\ \left(A \cup B\right)_{\lambda}=A_{\lambda} \cup B_{\lambda}, \quad(A \cap B)_{\lambda}=A_{\lambda} \cap B_{\lambda} A⊆B⇒A2⊆B2μ⩽λ⇒Aμ⊆Aλ(A∪B)λ=Aλ∪Bλ,(A∩B)λ=Aλ∩Bλ
3、支集、正规集与核
1
∘
1^{\circ}
1∘ 称集合
S
u
p
p
A
=
{
x
∣
A
(
x
)
>
0
}
\mathrm{Supp}\ A=\{x \mid A(x)>0\}
Supp A={x∣A(x)>0} 为
A
A
A 的支集, 记
S
u
p
p
A
=
A
v
\mathrm{Supp}\ A=A_{v}
Supp A=Av
2
∘
2^{\circ}
2∘ 称集合
K
e
r
A
=
{
x
∣
A
(
x
)
=
1
}
\mathrm{Ker}\ A=\{x \mid {A}(x)=1\}
Ker A={x∣A(x)=1} 为
A
A
A 的核, 记Ker
A
=
A
1
.
A=A_{1} .
A=A1. 若
Ker
A
≠
∅
\operatorname{Ker} A \neq \varnothing
KerA=∅,则称
为正规模糊集。
3
∘
3^{\circ}
3∘ 称集合
B
d
A
=
{
x
∣
0
<
A
(
x
)
<
1
}
\mathrm{Bd}\ A=\{x \mid 0<A(x)<1\}
Bd A={x∣0<A(x)<1} 为
A
A
A 的边界,即
B
d
A
=
Supp
A
−
Ker
A
\mathrm{Bd} A=\operatorname{Supp}\ A-\operatorname{Ker} A
BdA=Supp A−KerA
4、分解定理
- 任意模糊集合可以写成:
A = ⋃ λ ∈ [ 0 , 1 ] λ A λ A=\bigcup_{\lambda \in[0, 1]} \lambda A_{\lambda} A=λ∈[0,1]⋃λAλ
定理表,模糊集可由经典集合表示,这反映T模糊集和经典集合的密切关系,建立了模糊集与经典集合的转化关系。
- 上述定理也可以写成:
A ( x ) = ⋁ λ ∈ [ 0 , 1 ] [ λ ∧ χ A λ ( x ) ] A(x)=\bigvee_{\lambda \in[0,1]}\left[\lambda \wedge \chi_{A_{\lambda}}(x)\right] A(x)=λ∈[0,1]⋁[λ∧χAλ(x)]
或者
A
(
x
)
=
⋁
{
λ
∈
[
0
,
1
]
;
x
∈
A
λ
}
A(x)=\bigvee\left\{\lambda \in[0,1] ; x \in A_{\lambda}\right\}
A(x)=⋁{λ∈[0,1];x∈Aλ}
由上述结论可知,若已知模糊集的所有截集,则可以反求模糊集本身。
- 例3:求出模糊集 A = 0.7 u 1 + 0.8 u 2 + 0.2 u 3 + 1 u 4 A=\frac{0.7}{u_{1}}+\frac{0.8}{u_{2}}+\frac{0.2}{u_{3}}+\frac{1}{u_{4}} A=u10.7+u20.8+u30.2+u41的所有截集及分解.
所有截集:
A
1
=
{
u
4
}
=
1
u
4
,
1
A
1
=
1
u
4
A
0.8
=
{
u
2
,
u
4
}
=
1
u
2
+
1
u
4
,
0.8
A
0.8
=
0.8
u
2
+
0.8
u
4
A
0.7
=
1
u
1
+
1
u
2
+
1
u
4
,
0.7
A
0.7
=
0.7
u
1
+
0.7
u
2
+
0.7
u
4
A
0.2
=
{
u
1
,
u
2
,
u
3
,
u
4
}
=
1
u
1
+
1
u
2
+
1
u
3
+
1
u
4
0.2
A
0.2
=
0.2
u
1
+
0.2
u
2
+
0.2
u
3
+
0.2
u
4
A_{1}=\left\{u_{4}\right\}=\frac{1}{u_{4}}, \quad 1 A_{1}=\frac{1}{u_{4}} \\ A_{0.8}=\left\{u_{2}, u_{4}\right\}=\frac{1}{u_{2}}+\frac{1}{u_{4}}, \quad 0.8 A_{0.8}=\frac{0.8}{u_{2}}+\frac{0.8}{u_{4}} \\ A_{0.7}=\frac{1}{u_{1}}+\frac{1}{u_{2}}+\frac{1}{u_{4}}, \quad 0.7 A_{0.7}=\frac{0.7}{u_{1}}+\frac{0.7}{u_{2}}+\frac{0.7}{u_{4}} \\ A_{0.2}=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}=\frac{1}{u_{1}}+\frac{1}{u_{2}}+\frac{1}{u_{3}}+\frac{1}{u_{4}} \\ 0.2 A_{0.2}=\frac{0.2}{u_{1}}+\frac{0.2}{u_{2}}+\frac{0.2}{u_{3}}+\frac{0.2}{u_{4}}
A1={u4}=u41,1A1=u41A0.8={u2,u4}=u21+u41,0.8A0.8=u20.8+u40.8A0.7=u11+u21+u41,0.7A0.7=u10.7+u20.7+u40.7A0.2={u1,u2,u3,u4}=u11+u21+u31+u410.2A0.2=u10.2+u20.2+u30.2+u40.2
最终分解:
1
A
1
∪
0.8
A
0.8
∪
0.7
A
0.7
∪
0.2
A
0.2
=
1
u
4
⋁
(
0.8
u
2
+
0.8
u
4
)
⋁
(
0.7
u
1
+
0.7
u
2
+
0.7
u
4
)
⋁
(
0.2
u
1
+
0.2
u
2
+
0.2
u
3
+
0.2
u
3
)
=
0.7
⋁
0.2
u
1
+
0.8
⋁
0.7
⋁
0.2
u
2
+
0.2
u
3
+
1
4
V
0.8
⋁
0.7
⋁
0.2
u
4
=
0.7
u
1
+
0.8
u
2
+
0.2
u
3
+
1
u
4
=
A
1 A_{1} \cup 0.8 A_{0.8} \cup 0.7 A_{0.7} \cup 0.2 A_{0.2}=\frac{1}{u_{4}} \bigvee\left(\frac{0.8}{u_{2}}+\frac{0.8}{u_{4}}\right) \bigvee\left(\frac{0.7}{u_{1}}+\frac{0.7}{u_{2}}+\frac{0.7}{u_{4}}\right) \bigvee\left(\frac{0.2}{u_{1}}+\frac{0.2}{u_{2}}+\frac{0.2}{u_{3}}+\frac{0.2}{u_{3}}\right) \\ =\frac{0.7 \bigvee 0.2}{u_{1}}+\frac{0.8 \bigvee 0.7 \bigvee 0.2}{u_{2}}+\frac{0.2}{u_{3}}+\frac{1}{4} \frac{V 0.8 \bigvee 0.7 \bigvee 0.2}{u_{4}} \\ =\frac{0.7}{u_{1}}+\frac{0.8}{u_{2}}+\frac{0.2}{u_{3}}+\frac{1}{u_{4}}=A
1A1∪0.8A0.8∪0.7A0.7∪0.2A0.2=u41⋁(u20.8+u40.8)⋁(u10.7+u20.7+u40.7)⋁(u10.2+u20.2+u30.2+u30.2)=u10.7⋁0.2+u20.8⋁0.7⋁0.2+u30.2+41u4V0.8⋁0.7⋁0.2=u10.7+u20.8+u30.2+u41=A