模糊数学笔记:二、模糊截集与分解定理

1、定义

模糊集的入截集 A λ A_\lambda Aλ.是一个经典集合,由隶属度不小于 λ λ λ的成员构成.它的特征函数为
χ A λ ( x ) = { 1 , A ( x ) ⩾ λ 0 , A ( x ) < λ \chi_{A_{\lambda}}(x)=\left\{\begin{array}{ll} 1, & A(x) \geqslant \lambda \\ 0, & A(x)<\lambda \end{array}\right. χAλ(x)={1,0,A(x)λA(x)<λ

  • 例1:设论域 U U U表示学生,他们某门功课的分数依次是50, 60,70,85,90,95. A = “ 学 习 成 绩 好 的 学 生 ” A=“学习成绩好的学生” A=,他们所得的分数除以100后,即为各自对 A A A的隶属度,即

A = 0.5 u 1 + 0.6 u 2 + 0.7 u 3 + 0.85 u 4 + 0.9 u 5 + 0.95 u 6 A=\frac{0.5}{u_{1}}+\frac{0.6}{u_{2}}+\frac{0.7}{u_{3}}+\frac{0.85}{u_{4}}+\frac{0.9}{u_{5}}+\frac{0.95}{u_{6}} A=u10.5+u20.6+u30.7+u40.85+u50.9+u60.95

要糊定“学习成绩好的学生”实际上就是要将模糊集 A A A转化为经典集合,即先确定一个阈值 λ ( 0 ≤ 1 ≤ 1 ) λ (0≤1≤1) λ(011),然后将隶属度 A ( r ) ≥ λ A(r)≥λ A(r)λ的元素找出来,当 λ λ λ取0.9,0.8, 0.6, 0.5时:
A 0.9 ( 90  分以上者  ) = { u 5 , u 6 } , A 0.8 ( 80  分以上者  ) = { u 4 , u 5 , u 6 } A 0.6 ( 60  分以上者  ) = { u 2 , u 3 , u 4 , u 5 , u 6 } , A 0.5 ( 50  分以上者  ) = { u 1 , u 2 , u 3 , u 4 , u 5 , u 6 } \begin{array}{l} A_{0.9}(90 \text { 分以上者 })=\left\{u_{5}, u_{6}\right\}, \\ A_{0.8}(80 \text { 分以上者 })=\left\{u_{4}, u_{5}, u_{6}\right\} \\ A_{0.6}(60 \text { 分以上者 })=\left\{u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}, \\ A_{0.5}(50 \text { 分以上者 })=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\} \end{array} A0.9(90 分以上者 )={u5,u6},A0.8(80 分以上者 )={u4,u5,u6}A0.6(60 分以上者 )={u2,u3,u4,u5,u6},A0.5(50 分以上者 )={u1,u2,u3,u4,u5,u6}

  • 例2: A ( x ) = exp ⁡ [ 1 − ( x − a ) 2 σ 2 ] A(x)=\exp \left[1-\frac{(x-a)^{2}}{\sigma^{2}}\right] A(x)=exp[1σ2(xa)2],求 A λ ( 0 < λ ≤ 1 ) A_\lambda(0<\lambda \leq 1) Aλ(0<λ1)

A ( x ) ⩾ λ ⇔ − ( x − a ) 2 σ 2 ⩾ ln ⁡ λ ⇔ ( x − a ) 2 ⩽ − σ 2 ln ⁡ λ ⇔ a − − σ 2 ln ⁡ λ ⩽ x ⩽ a + − σ 2 ln ⁡ λ \begin{aligned} A(x) \geqslant \lambda & \Leftrightarrow-\frac{(x-a)^{2}}{\sigma^{2}} \geqslant \ln \lambda \\ & \Leftrightarrow(x-a)^{2} \leqslant-\sigma^{2} \ln \lambda \\ & \Leftrightarrow a-\sqrt{-\sigma^{2} \ln \lambda} \leqslant x \leqslant a+\sqrt{-\sigma^{2} \ln \lambda} \end{aligned} A(x)λσ2(xa)2lnλ(xa)2σ2lnλaσ2lnλ xa+σ2lnλ

​ 因此
A λ = { x ∣ a − − σ 2 ln ⁡ λ ⩽ x ⩽ a + − σ 2 λ } A_{\lambda}=\left\{x \mid a-\sqrt{-\sigma^{2} \ln \lambda} \leqslant x \leqslant a+\sqrt{-\sigma^{2} \lambda}\right\} \\ Aλ={xaσ2lnλ xa+σ2λ }
​ 或
A λ = [ a − − σ 2 ln ⁡ λ , a + − σ 2 ln ⁡ λ ] A_{\lambda}=[a-\sqrt{-\sigma^{2} \ln \lambda}, a+\sqrt{-\sigma^{2} \ln \lambda}] Aλ=[aσ2lnλ ,a+σ2lnλ ]

2、性质

A ⊆ B ⇒ A 2 ⊆ B 2 μ ⩽ λ ⇒ A μ ⊆ A λ ( A ∪ B ) λ = A λ ∪ B λ , ( A ∩ B ) λ = A λ ∩ B λ A \subseteq B \Rightarrow A_{2} \subseteq B_{2} \\ \mu \leqslant \lambda \Rightarrow A_{\mu} \subseteq A_{\lambda} \\ \left(A \cup B\right)_{\lambda}=A_{\lambda} \cup B_{\lambda}, \quad(A \cap B)_{\lambda}=A_{\lambda} \cap B_{\lambda} ABA2B2μλAμAλ(AB)λ=AλBλ,(AB)λ=AλBλ

3、支集、正规集与核

1 ∘ 1^{\circ} 1 称集合 S u p p   A = { x ∣ A ( x ) > 0 } \mathrm{Supp}\ A=\{x \mid A(x)>0\} Supp A={xA(x)>0} A A A 的支集, 记 S u p p   A = A v \mathrm{Supp}\ A=A_{v} Supp A=Av
2 ∘ 2^{\circ} 2 称集合 K e r   A = { x ∣ A ( x ) = 1 } \mathrm{Ker}\ A=\{x \mid {A}(x)=1\} Ker A={xA(x)=1} A A A 的核, 记Ker A = A 1 . A=A_{1} . A=A1. Ker ⁡ A ≠ ∅ \operatorname{Ker} A \neq \varnothing KerA=,则称
为正规模糊集。
3 ∘ 3^{\circ} 3 称集合 B d   A = { x ∣ 0 < A ( x ) < 1 } \mathrm{Bd}\ A=\{x \mid 0<A(x)<1\} Bd A={x0<A(x)<1} A A A 的边界,即 B d A = Supp ⁡   A − Ker ⁡ A \mathrm{Bd} A=\operatorname{Supp}\ A-\operatorname{Ker} A BdA=Supp AKerA

4、分解定理
  • 任意模糊集合可以写成:

A = ⋃ λ ∈ [ 0 , 1 ] λ A λ A=\bigcup_{\lambda \in[0, 1]} \lambda A_{\lambda} A=λ[0,1]λAλ

定理表,模糊集可由经典集合表示,这反映T模糊集和经典集合的密切关系,建立了模糊集与经典集合的转化关系。

  • 上述定理也可以写成:

A ( x ) = ⋁ λ ∈ [ 0 , 1 ] [ λ ∧ χ A λ ( x ) ] A(x)=\bigvee_{\lambda \in[0,1]}\left[\lambda \wedge \chi_{A_{\lambda}}(x)\right] A(x)=λ[0,1][λχAλ(x)]

或者
A ( x ) = ⋁ { λ ∈ [ 0 , 1 ] ; x ∈ A λ } A(x)=\bigvee\left\{\lambda \in[0,1] ; x \in A_{\lambda}\right\} A(x)={λ[0,1];xAλ}
由上述结论可知,若已知模糊集的所有截集,则可以反求模糊集本身。

  • 例3:求出模糊集 A = 0.7 u 1 + 0.8 u 2 + 0.2 u 3 + 1 u 4 A=\frac{0.7}{u_{1}}+\frac{0.8}{u_{2}}+\frac{0.2}{u_{3}}+\frac{1}{u_{4}} A=u10.7+u20.8+u30.2+u41的所有截集及分解.

所有截集:
A 1 = { u 4 } = 1 u 4 , 1 A 1 = 1 u 4 A 0.8 = { u 2 , u 4 } = 1 u 2 + 1 u 4 , 0.8 A 0.8 = 0.8 u 2 + 0.8 u 4 A 0.7 = 1 u 1 + 1 u 2 + 1 u 4 , 0.7 A 0.7 = 0.7 u 1 + 0.7 u 2 + 0.7 u 4 A 0.2 = { u 1 , u 2 , u 3 , u 4 } = 1 u 1 + 1 u 2 + 1 u 3 + 1 u 4 0.2 A 0.2 = 0.2 u 1 + 0.2 u 2 + 0.2 u 3 + 0.2 u 4 A_{1}=\left\{u_{4}\right\}=\frac{1}{u_{4}}, \quad 1 A_{1}=\frac{1}{u_{4}} \\ A_{0.8}=\left\{u_{2}, u_{4}\right\}=\frac{1}{u_{2}}+\frac{1}{u_{4}}, \quad 0.8 A_{0.8}=\frac{0.8}{u_{2}}+\frac{0.8}{u_{4}} \\ A_{0.7}=\frac{1}{u_{1}}+\frac{1}{u_{2}}+\frac{1}{u_{4}}, \quad 0.7 A_{0.7}=\frac{0.7}{u_{1}}+\frac{0.7}{u_{2}}+\frac{0.7}{u_{4}} \\ A_{0.2}=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}=\frac{1}{u_{1}}+\frac{1}{u_{2}}+\frac{1}{u_{3}}+\frac{1}{u_{4}} \\ 0.2 A_{0.2}=\frac{0.2}{u_{1}}+\frac{0.2}{u_{2}}+\frac{0.2}{u_{3}}+\frac{0.2}{u_{4}} A1={u4}=u41,1A1=u41A0.8={u2,u4}=u21+u41,0.8A0.8=u20.8+u40.8A0.7=u11+u21+u41,0.7A0.7=u10.7+u20.7+u40.7A0.2={u1,u2,u3,u4}=u11+u21+u31+u410.2A0.2=u10.2+u20.2+u30.2+u40.2
最终分解:
1 A 1 ∪ 0.8 A 0.8 ∪ 0.7 A 0.7 ∪ 0.2 A 0.2 = 1 u 4 ⋁ ( 0.8 u 2 + 0.8 u 4 ) ⋁ ( 0.7 u 1 + 0.7 u 2 + 0.7 u 4 ) ⋁ ( 0.2 u 1 + 0.2 u 2 + 0.2 u 3 + 0.2 u 3 ) = 0.7 ⋁ 0.2 u 1 + 0.8 ⋁ 0.7 ⋁ 0.2 u 2 + 0.2 u 3 + 1 4 V 0.8 ⋁ 0.7 ⋁ 0.2 u 4 = 0.7 u 1 + 0.8 u 2 + 0.2 u 3 + 1 u 4 = A 1 A_{1} \cup 0.8 A_{0.8} \cup 0.7 A_{0.7} \cup 0.2 A_{0.2}=\frac{1}{u_{4}} \bigvee\left(\frac{0.8}{u_{2}}+\frac{0.8}{u_{4}}\right) \bigvee\left(\frac{0.7}{u_{1}}+\frac{0.7}{u_{2}}+\frac{0.7}{u_{4}}\right) \bigvee\left(\frac{0.2}{u_{1}}+\frac{0.2}{u_{2}}+\frac{0.2}{u_{3}}+\frac{0.2}{u_{3}}\right) \\ =\frac{0.7 \bigvee 0.2}{u_{1}}+\frac{0.8 \bigvee 0.7 \bigvee 0.2}{u_{2}}+\frac{0.2}{u_{3}}+\frac{1}{4} \frac{V 0.8 \bigvee 0.7 \bigvee 0.2}{u_{4}} \\ =\frac{0.7}{u_{1}}+\frac{0.8}{u_{2}}+\frac{0.2}{u_{3}}+\frac{1}{u_{4}}=A 1A10.8A0.80.7A0.70.2A0.2=u41(u20.8+u40.8)(u10.7+u20.7+u40.7)(u10.2+u20.2+u30.2+u30.2)=u10.70.2+u20.80.70.2+u30.2+41u4V0.80.70.2=u10.7+u20.8+u30.2+u41=A

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

半个冯博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值