1、定义
模糊集的入截集AλA_\lambdaAλ.是一个经典集合,由隶属度不小于λλλ的成员构成.它的特征函数为
χAλ(x)={1,A(x)⩾λ0,A(x)<λ
\chi_{A_{\lambda}}(x)=\left\{\begin{array}{ll}
1, & A(x) \geqslant \lambda \\
0, & A(x)<\lambda
\end{array}\right.
χAλ(x)={1,0,A(x)⩾λA(x)<λ
- 例1:设论域UUU表示学生,他们某门功课的分数依次是50, 60,70,85,90,95. A=“学习成绩好的学生”A=“学习成绩好的学生”A=“学习成绩好的学生”,他们所得的分数除以100后,即为各自对AAA的隶属度,即
A=0.5u1+0.6u2+0.7u3+0.85u4+0.9u5+0.95u6 A=\frac{0.5}{u_{1}}+\frac{0.6}{u_{2}}+\frac{0.7}{u_{3}}+\frac{0.85}{u_{4}}+\frac{0.9}{u_{5}}+\frac{0.95}{u_{6}} A=u10.5+u20.6+u30.7+u40.85+u50.9+u60.95
要糊定“学习成绩好的学生”实际上就是要将模糊集AAA转化为经典集合,即先确定一个阈值λ(0≤1≤1)λ (0≤1≤1)λ(0≤1≤1),然后将隶属度A(r)≥λA(r)≥λA(r)≥λ的元素找出来,当λλλ取0.9,0.8, 0.6, 0.5时:
A0.9(90 分以上者 )={u5,u6},A0.8(80 分以上者 )={u4,u5,u6}A0.6(60 分以上者 )={u2,u3,u4,u5,u6},A0.5(50 分以上者 )={u1,u2,u3,u4,u5,u6}
\begin{array}{l}
A_{0.9}(90 \text { 分以上者 })=\left\{u_{5}, u_{6}\right\}, \\
A_{0.8}(80 \text { 分以上者 })=\left\{u_{4}, u_{5}, u_{6}\right\} \\
A_{0.6}(60 \text { 分以上者 })=\left\{u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}, \\
A_{0.5}(50 \text { 分以上者 })=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}
\end{array}
A0.9(90 分以上者 )={u5,u6},A0.8(80 分以上者 )={u4,u5,u6}A0.6(60 分以上者 )={u2,u3,u4,u5,u6},A0.5(50 分以上者 )={u1,u2,u3,u4,u5,u6}
- 例2:A(x)=exp[1−(x−a)2σ2]A(x)=\exp \left[1-\frac{(x-a)^{2}}{\sigma^{2}}\right]A(x)=exp[1−σ2(x−a)2],求Aλ(0<λ≤1)A_\lambda(0<\lambda \leq 1)Aλ(0<λ≤1)
A(x)⩾λ⇔−(x−a)2σ2⩾lnλ⇔(x−a)2⩽−σ2lnλ⇔a−−σ2lnλ⩽x⩽a+−σ2lnλ \begin{aligned} A(x) \geqslant \lambda & \Leftrightarrow-\frac{(x-a)^{2}}{\sigma^{2}} \geqslant \ln \lambda \\ & \Leftrightarrow(x-a)^{2} \leqslant-\sigma^{2} \ln \lambda \\ & \Leftrightarrow a-\sqrt{-\sigma^{2} \ln \lambda} \leqslant x \leqslant a+\sqrt{-\sigma^{2} \ln \lambda} \end{aligned} A(x)⩾λ⇔−σ2(x−a)2⩾lnλ⇔(x−a)2⩽−σ2lnλ⇔a−−σ2lnλ⩽x⩽a+−σ2lnλ
因此
Aλ={x∣a−−σ2lnλ⩽x⩽a+−σ2λ}
A_{\lambda}=\left\{x \mid a-\sqrt{-\sigma^{2} \ln \lambda} \leqslant x \leqslant a+\sqrt{-\sigma^{2} \lambda}\right\} \\
Aλ={x∣a−−σ2lnλ⩽x⩽a+−σ2λ}
或
Aλ=[a−−σ2lnλ,a+−σ2lnλ]
A_{\lambda}=[a-\sqrt{-\sigma^{2} \ln \lambda}, a+\sqrt{-\sigma^{2} \ln \lambda}]
Aλ=[a−−σ2lnλ,a+−σ2lnλ]
2、性质
A⊆B⇒A2⊆B2μ⩽λ⇒Aμ⊆Aλ(A∪B)λ=Aλ∪Bλ,(A∩B)λ=Aλ∩Bλ A \subseteq B \Rightarrow A_{2} \subseteq B_{2} \\ \mu \leqslant \lambda \Rightarrow A_{\mu} \subseteq A_{\lambda} \\ \left(A \cup B\right)_{\lambda}=A_{\lambda} \cup B_{\lambda}, \quad(A \cap B)_{\lambda}=A_{\lambda} \cap B_{\lambda} A⊆B⇒A2⊆B2μ⩽λ⇒Aμ⊆Aλ(A∪B)λ=Aλ∪Bλ,(A∩B)λ=Aλ∩Bλ
3、支集、正规集与核
1∘1^{\circ}1∘ 称集合 Supp A={x∣A(x)>0}\mathrm{Supp}\ A=\{x \mid A(x)>0\}Supp A={x∣A(x)>0} 为 AAA 的支集, 记 Supp A=Av\mathrm{Supp}\ A=A_{v}Supp A=Av
2∘2^{\circ}2∘ 称集合 Ker A={x∣A(x)=1}\mathrm{Ker}\ A=\{x \mid {A}(x)=1\}Ker A={x∣A(x)=1} 为 AAA 的核, 记Ker A=A1.A=A_{1} .A=A1. 若 KerA≠∅\operatorname{Ker} A \neq \varnothingKerA=∅,则称
为正规模糊集。
3∘3^{\circ}3∘ 称集合 Bd A={x∣0<A(x)<1}\mathrm{Bd}\ A=\{x \mid 0<A(x)<1\}Bd A={x∣0<A(x)<1} 为 AAA 的边界,即 BdA=Supp A−KerA\mathrm{Bd} A=\operatorname{Supp}\ A-\operatorname{Ker} ABdA=Supp A−KerA
4、分解定理
- 任意模糊集合可以写成:
A=⋃λ∈[0,1]λAλ A=\bigcup_{\lambda \in[0, 1]} \lambda A_{\lambda} A=λ∈[0,1]⋃λAλ
定理表,模糊集可由经典集合表示,这反映T模糊集和经典集合的密切关系,建立了模糊集与经典集合的转化关系。
- 上述定理也可以写成:
A(x)=⋁λ∈[0,1][λ∧χAλ(x)] A(x)=\bigvee_{\lambda \in[0,1]}\left[\lambda \wedge \chi_{A_{\lambda}}(x)\right] A(x)=λ∈[0,1]⋁[λ∧χAλ(x)]
或者
A(x)=⋁{λ∈[0,1];x∈Aλ}
A(x)=\bigvee\left\{\lambda \in[0,1] ; x \in A_{\lambda}\right\}
A(x)=⋁{λ∈[0,1];x∈Aλ}
由上述结论可知,若已知模糊集的所有截集,则可以反求模糊集本身。
- 例3:求出模糊集A=0.7u1+0.8u2+0.2u3+1u4A=\frac{0.7}{u_{1}}+\frac{0.8}{u_{2}}+\frac{0.2}{u_{3}}+\frac{1}{u_{4}}A=u10.7+u20.8+u30.2+u41的所有截集及分解.
所有截集:
A1={u4}=1u4,1A1=1u4A0.8={u2,u4}=1u2+1u4,0.8A0.8=0.8u2+0.8u4A0.7=1u1+1u2+1u4,0.7A0.7=0.7u1+0.7u2+0.7u4A0.2={u1,u2,u3,u4}=1u1+1u2+1u3+1u40.2A0.2=0.2u1+0.2u2+0.2u3+0.2u4
A_{1}=\left\{u_{4}\right\}=\frac{1}{u_{4}}, \quad 1 A_{1}=\frac{1}{u_{4}} \\
A_{0.8}=\left\{u_{2}, u_{4}\right\}=\frac{1}{u_{2}}+\frac{1}{u_{4}}, \quad 0.8 A_{0.8}=\frac{0.8}{u_{2}}+\frac{0.8}{u_{4}} \\
A_{0.7}=\frac{1}{u_{1}}+\frac{1}{u_{2}}+\frac{1}{u_{4}}, \quad 0.7 A_{0.7}=\frac{0.7}{u_{1}}+\frac{0.7}{u_{2}}+\frac{0.7}{u_{4}} \\
A_{0.2}=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}=\frac{1}{u_{1}}+\frac{1}{u_{2}}+\frac{1}{u_{3}}+\frac{1}{u_{4}} \\
0.2 A_{0.2}=\frac{0.2}{u_{1}}+\frac{0.2}{u_{2}}+\frac{0.2}{u_{3}}+\frac{0.2}{u_{4}}
A1={u4}=u41,1A1=u41A0.8={u2,u4}=u21+u41,0.8A0.8=u20.8+u40.8A0.7=u11+u21+u41,0.7A0.7=u10.7+u20.7+u40.7A0.2={u1,u2,u3,u4}=u11+u21+u31+u410.2A0.2=u10.2+u20.2+u30.2+u40.2
最终分解:
1A1∪0.8A0.8∪0.7A0.7∪0.2A0.2=1u4⋁(0.8u2+0.8u4)⋁(0.7u1+0.7u2+0.7u4)⋁(0.2u1+0.2u2+0.2u3+0.2u3)=0.7⋁0.2u1+0.8⋁0.7⋁0.2u2+0.2u3+14V0.8⋁0.7⋁0.2u4=0.7u1+0.8u2+0.2u3+1u4=A
1 A_{1} \cup 0.8 A_{0.8} \cup 0.7 A_{0.7} \cup 0.2 A_{0.2}=\frac{1}{u_{4}} \bigvee\left(\frac{0.8}{u_{2}}+\frac{0.8}{u_{4}}\right) \bigvee\left(\frac{0.7}{u_{1}}+\frac{0.7}{u_{2}}+\frac{0.7}{u_{4}}\right) \bigvee\left(\frac{0.2}{u_{1}}+\frac{0.2}{u_{2}}+\frac{0.2}{u_{3}}+\frac{0.2}{u_{3}}\right) \\
=\frac{0.7 \bigvee 0.2}{u_{1}}+\frac{0.8 \bigvee 0.7 \bigvee 0.2}{u_{2}}+\frac{0.2}{u_{3}}+\frac{1}{4} \frac{V 0.8 \bigvee 0.7 \bigvee 0.2}{u_{4}} \\
=\frac{0.7}{u_{1}}+\frac{0.8}{u_{2}}+\frac{0.2}{u_{3}}+\frac{1}{u_{4}}=A
1A1∪0.8A0.8∪0.7A0.7∪0.2A0.2=u41⋁(u20.8+u40.8)⋁(u10.7+u20.7+u40.7)⋁(u10.2+u20.2+u30.2+u30.2)=u10.7⋁0.2+u20.8⋁0.7⋁0.2+u30.2+41u4V0.8⋁0.7⋁0.2=u10.7+u20.8+u30.2+u41=A