模糊数学笔记:二、模糊截集与分解定理

本文深入探讨了模糊集的基本概念,包括模糊集的定义、性质、支集、正规集与核的概念,以及模糊集的分解定理。通过具体实例解析模糊集的入截集和分解过程,展示了模糊集与经典集合之间的转化关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、定义

模糊集的入截集AλA_\lambdaAλ.是一个经典集合,由隶属度不小于λλλ的成员构成.它的特征函数为
χAλ(x)={1,A(x)⩾λ0,A(x)<λ \chi_{A_{\lambda}}(x)=\left\{\begin{array}{ll} 1, & A(x) \geqslant \lambda \\ 0, & A(x)<\lambda \end{array}\right. χAλ(x)={1,0,A(x)λA(x)<λ

  • 例1:设论域UUU表示学生,他们某门功课的分数依次是50, 60,70,85,90,95. A=“学习成绩好的学生”A=“学习成绩好的学生”A=,他们所得的分数除以100后,即为各自对AAA的隶属度,即

A=0.5u1+0.6u2+0.7u3+0.85u4+0.9u5+0.95u6 A=\frac{0.5}{u_{1}}+\frac{0.6}{u_{2}}+\frac{0.7}{u_{3}}+\frac{0.85}{u_{4}}+\frac{0.9}{u_{5}}+\frac{0.95}{u_{6}} A=u10.5+u20.6+u30.7+u40.85+u50.9+u60.95

要糊定“学习成绩好的学生”实际上就是要将模糊集AAA转化为经典集合,即先确定一个阈值λ(0≤1≤1)λ (0≤1≤1)λ(011),然后将隶属度A(r)≥λA(r)≥λA(r)λ的元素找出来,当λλλ取0.9,0.8, 0.6, 0.5时:
A0.9(90 分以上者 )={u5,u6},A0.8(80 分以上者 )={u4,u5,u6}A0.6(60 分以上者 )={u2,u3,u4,u5,u6},A0.5(50 分以上者 )={u1,u2,u3,u4,u5,u6} \begin{array}{l} A_{0.9}(90 \text { 分以上者 })=\left\{u_{5}, u_{6}\right\}, \\ A_{0.8}(80 \text { 分以上者 })=\left\{u_{4}, u_{5}, u_{6}\right\} \\ A_{0.6}(60 \text { 分以上者 })=\left\{u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}, \\ A_{0.5}(50 \text { 分以上者 })=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\} \end{array} A0.9(90 分以上者 )={u5,u6},A0.8(80 分以上者 )={u4,u5,u6}A0.6(60 分以上者 )={u2,u3,u4,u5,u6},A0.5(50 分以上者 )={u1,u2,u3,u4,u5,u6}

  • 例2:A(x)=exp⁡[1−(x−a)2σ2]A(x)=\exp \left[1-\frac{(x-a)^{2}}{\sigma^{2}}\right]A(x)=exp[1σ2(xa)2],求Aλ(0<λ≤1)A_\lambda(0<\lambda \leq 1)Aλ(0<λ1)

A(x)⩾λ⇔−(x−a)2σ2⩾ln⁡λ⇔(x−a)2⩽−σ2ln⁡λ⇔a−−σ2ln⁡λ⩽x⩽a+−σ2ln⁡λ \begin{aligned} A(x) \geqslant \lambda & \Leftrightarrow-\frac{(x-a)^{2}}{\sigma^{2}} \geqslant \ln \lambda \\ & \Leftrightarrow(x-a)^{2} \leqslant-\sigma^{2} \ln \lambda \\ & \Leftrightarrow a-\sqrt{-\sigma^{2} \ln \lambda} \leqslant x \leqslant a+\sqrt{-\sigma^{2} \ln \lambda} \end{aligned} A(x)λσ2(xa)2lnλ(xa)2σ2lnλaσ2lnλxa+σ2lnλ

​ 因此
Aλ={x∣a−−σ2ln⁡λ⩽x⩽a+−σ2λ} A_{\lambda}=\left\{x \mid a-\sqrt{-\sigma^{2} \ln \lambda} \leqslant x \leqslant a+\sqrt{-\sigma^{2} \lambda}\right\} \\ Aλ={xaσ2lnλxa+σ2λ}
​ 或
Aλ=[a−−σ2ln⁡λ,a+−σ2ln⁡λ] A_{\lambda}=[a-\sqrt{-\sigma^{2} \ln \lambda}, a+\sqrt{-\sigma^{2} \ln \lambda}] Aλ=[aσ2lnλ,a+σ2lnλ]

2、性质

A⊆B⇒A2⊆B2μ⩽λ⇒Aμ⊆Aλ(A∪B)λ=Aλ∪Bλ,(A∩B)λ=Aλ∩Bλ A \subseteq B \Rightarrow A_{2} \subseteq B_{2} \\ \mu \leqslant \lambda \Rightarrow A_{\mu} \subseteq A_{\lambda} \\ \left(A \cup B\right)_{\lambda}=A_{\lambda} \cup B_{\lambda}, \quad(A \cap B)_{\lambda}=A_{\lambda} \cap B_{\lambda} ABA2B2μλAμAλ(AB)λ=AλBλ,(AB)λ=AλBλ

3、支集、正规集与核

1∘1^{\circ}1 称集合 Supp A={x∣A(x)>0}\mathrm{Supp}\ A=\{x \mid A(x)>0\}Supp A={xA(x)>0}AAA 的支集, 记 Supp A=Av\mathrm{Supp}\ A=A_{v}Supp A=Av
2∘2^{\circ}2 称集合 Ker A={x∣A(x)=1}\mathrm{Ker}\ A=\{x \mid {A}(x)=1\}Ker A={xA(x)=1}AAA 的核, 记Ker A=A1.A=A_{1} .A=A1.Ker⁡A≠∅\operatorname{Ker} A \neq \varnothingKerA=,则称
为正规模糊集。
3∘3^{\circ}3 称集合 Bd A={x∣0<A(x)<1}\mathrm{Bd}\ A=\{x \mid 0<A(x)<1\}Bd A={x0<A(x)<1}AAA 的边界,即 BdA=Supp⁡ A−Ker⁡A\mathrm{Bd} A=\operatorname{Supp}\ A-\operatorname{Ker} ABdA=Supp AKerA

4、分解定理
  • 任意模糊集合可以写成:

A=⋃λ∈[0,1]λAλ A=\bigcup_{\lambda \in[0, 1]} \lambda A_{\lambda} A=λ[0,1]λAλ

定理表,模糊集可由经典集合表示,这反映T模糊集和经典集合的密切关系,建立了模糊集与经典集合的转化关系。

  • 上述定理也可以写成:

A(x)=⋁λ∈[0,1][λ∧χAλ(x)] A(x)=\bigvee_{\lambda \in[0,1]}\left[\lambda \wedge \chi_{A_{\lambda}}(x)\right] A(x)=λ[0,1][λχAλ(x)]

或者
A(x)=⋁{λ∈[0,1];x∈Aλ} A(x)=\bigvee\left\{\lambda \in[0,1] ; x \in A_{\lambda}\right\} A(x)={λ[0,1];xAλ}
由上述结论可知,若已知模糊集的所有截集,则可以反求模糊集本身。

  • 例3:求出模糊集A=0.7u1+0.8u2+0.2u3+1u4A=\frac{0.7}{u_{1}}+\frac{0.8}{u_{2}}+\frac{0.2}{u_{3}}+\frac{1}{u_{4}}A=u10.7+u20.8+u30.2+u41的所有截集及分解.

所有截集:
A1={u4}=1u4,1A1=1u4A0.8={u2,u4}=1u2+1u4,0.8A0.8=0.8u2+0.8u4A0.7=1u1+1u2+1u4,0.7A0.7=0.7u1+0.7u2+0.7u4A0.2={u1,u2,u3,u4}=1u1+1u2+1u3+1u40.2A0.2=0.2u1+0.2u2+0.2u3+0.2u4 A_{1}=\left\{u_{4}\right\}=\frac{1}{u_{4}}, \quad 1 A_{1}=\frac{1}{u_{4}} \\ A_{0.8}=\left\{u_{2}, u_{4}\right\}=\frac{1}{u_{2}}+\frac{1}{u_{4}}, \quad 0.8 A_{0.8}=\frac{0.8}{u_{2}}+\frac{0.8}{u_{4}} \\ A_{0.7}=\frac{1}{u_{1}}+\frac{1}{u_{2}}+\frac{1}{u_{4}}, \quad 0.7 A_{0.7}=\frac{0.7}{u_{1}}+\frac{0.7}{u_{2}}+\frac{0.7}{u_{4}} \\ A_{0.2}=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}=\frac{1}{u_{1}}+\frac{1}{u_{2}}+\frac{1}{u_{3}}+\frac{1}{u_{4}} \\ 0.2 A_{0.2}=\frac{0.2}{u_{1}}+\frac{0.2}{u_{2}}+\frac{0.2}{u_{3}}+\frac{0.2}{u_{4}} A1={u4}=u41,1A1=u41A0.8={u2,u4}=u21+u41,0.8A0.8=u20.8+u40.8A0.7=u11+u21+u41,0.7A0.7=u10.7+u20.7+u40.7A0.2={u1,u2,u3,u4}=u11+u21+u31+u410.2A0.2=u10.2+u20.2+u30.2+u40.2
最终分解:
1A1∪0.8A0.8∪0.7A0.7∪0.2A0.2=1u4⋁(0.8u2+0.8u4)⋁(0.7u1+0.7u2+0.7u4)⋁(0.2u1+0.2u2+0.2u3+0.2u3)=0.7⋁0.2u1+0.8⋁0.7⋁0.2u2+0.2u3+14V0.8⋁0.7⋁0.2u4=0.7u1+0.8u2+0.2u3+1u4=A 1 A_{1} \cup 0.8 A_{0.8} \cup 0.7 A_{0.7} \cup 0.2 A_{0.2}=\frac{1}{u_{4}} \bigvee\left(\frac{0.8}{u_{2}}+\frac{0.8}{u_{4}}\right) \bigvee\left(\frac{0.7}{u_{1}}+\frac{0.7}{u_{2}}+\frac{0.7}{u_{4}}\right) \bigvee\left(\frac{0.2}{u_{1}}+\frac{0.2}{u_{2}}+\frac{0.2}{u_{3}}+\frac{0.2}{u_{3}}\right) \\ =\frac{0.7 \bigvee 0.2}{u_{1}}+\frac{0.8 \bigvee 0.7 \bigvee 0.2}{u_{2}}+\frac{0.2}{u_{3}}+\frac{1}{4} \frac{V 0.8 \bigvee 0.7 \bigvee 0.2}{u_{4}} \\ =\frac{0.7}{u_{1}}+\frac{0.8}{u_{2}}+\frac{0.2}{u_{3}}+\frac{1}{u_{4}}=A 1A10.8A0.80.7A0.70.2A0.2=u41(u20.8+u40.8)(u10.7+u20.7+u40.7)(u10.2+u20.2+u30.2+u30.2)=u10.70.2+u20.80.70.2+u30.2+41u4V0.80.70.2=u10.7+u20.8+u30.2+u41=A

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

半个冯博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值