证明:切平面过定点的曲面是锥面.
证明:
方法一:
设曲面 S : r = r ( u , v ) S:\mathbf{r}=\mathbf{r}(u,v) S:r=r(u,v)的切平面过定点 P 0 P_0 P0,其位置向量为 p 0 . \mathbf{p}_0. p0.则
r ( u , v ) − p 0 = λ ( u , v ) r u + μ ( u , v ) r v , \mathbf{r}(u,v)-\mathbf{p}_0=\lambda(u,v)\mathbf{r}_u+\mu(u,v)\mathbf{r}_v, r(u,v)−p0=λ(u,v)ru+μ(u,v)rv,
其中
λ
(
u
,
v
)
,
μ
(
u
,
v
)
\lambda(u,v),\mu(u,v)
λ(u,v),μ(u,v) 是光滑函数.从而,
r
u
=
λ
u
r
u
+
λ
r
u
u
+
μ
u
r
v
+
μ
r
u
v
,
r
v
=
λ
v
r
u
+
λ
r
u
v
+
μ
v
r
v
+
μ
r
v
v
.
\mathbf{r}_u=\lambda_u\mathbf{r}_u+\lambda\mathbf{r}_{uu}+\mu_u\mathbf{r}_v+\mu\mathbf{r}_{uv},\quad\mathbf{r}_v=\lambda_v\mathbf{r}_u+\lambda\mathbf{r}_{uv}+\mu_v\mathbf{r}_v+\mu\mathbf{r}_{vv}.
ru=λuru+λruu+μurv+μruv,rv=λvru+λruv+μvrv+μrvv.
将以上两式与 n 作内积,有
λ
L
+
μ
M
=
0
,
λ
M
+
μ
N
=
0.
\lambda L+\mu M=0,\\\lambda M+\mu N=0.
λL+μM=0,λM+μN=0.
故
λ
(
L
N
−
M
2
)
=
0
,
μ
(
L
N
−
M
2
)
=
0.
\lambda(LN-M^2)=0,\\\mu(LN-M^2)=0.
λ(LN−M2)=0,μ(LN−M2)=0.
由于
λ
(
u
,
v
)
,
μ
(
u
,
v
)
\lambda(u,v),\mu(u,v)
λ(u,v),μ(u,v)只在一点同时为0,故
L
N
−
M
2
=
0.
LN-M^2=0.
LN−M2=0.从而,Gauss 曲率
K
=
L
N
−
M
2
E
G
−
F
2
=
0.
K=\frac{LN-M^2}{EG-F^2}=0.
K=EG−F2LN−M2=0.
设
S
S
S上的点
P
P
P是非脐点,则在它的一个小邻域内,
S
S
S无脐点.
对应于两个主方向量场,在更小的邻域内, S S S 有正交参数,仍记为 ( u , v ) . ( u, v) . (u,v). (对应的参数曲线是正交曲率线)
而由 K = 0 K=0 K=0,此小邻域内每点都是严格抛物点(非平点), 只沿一个方向法曲率为 0. 故其中一族参数曲线是曲率线且是渐近线.
而沿着方向 r ( u , v ) − p 0 \mathbf{r}(u,v)-\mathbf{p}_0 r(u,v)−p0,法曲率
k n ( r ( u , v ) − p 0 ) = L λ 2 + 2 M λ μ + N μ 2 E λ 2 + 2 F λ μ + G μ 2 = 0. k_n(\mathbf{r}(u,v)-\mathbf{p}_0)=\frac{L\lambda^2+2M\lambda\mu+N\mu^2}{E\lambda^2+2F\lambda\mu+G\mu^2}=0. kn(r(u,v)−p0)=Eλ2+2Fλμ+Gμ2Lλ2+2Mλμ+Nμ2=0.
因此,这族曲率渐近线的切方向都过同一定点 P 0 . P_0. P0.由习题二 9 (1),它们必是一束直线.
现在设
S
S
S上点
P
P
P是脐点,则它是平点.若存在
P
P
P的一个邻域,
S
S
S上每点都是平点.则
S
S
S在此邻域内是平面的一部分.若
P
P
P不存在这样的邻域,则在
P
P
P的附近脐点的轨迹至多是一些曲线,不能决定曲面的形状。
综上所述,曲面
S
S
S上每点都在曲面上的一条直线上且所有这些直线过定点,
即 : S :S :S 是锥面.
方法二:
设曲面 S S S的所有切平面过定点 P 0 . P_0. P0.取曲面上任意点 P ≠ P 0 . P\neq P_0. P=P0.设点 P 0 P_0 P0与过点 P P P法线张成的平面为 Π \Pi Π,而曲面 S S S与平面 Π \Pi Π的相交曲线为 C . C. C.对于 C C C上任意一点 Q Q Q,直线 P ‾ 0 Q \overline P_0Q P0Q在平面 II 中.
而由假设, S S S的切平面都过 P 0 P_0 P0,故在 Q Q Q点附近曲线 C C C只在直线 P ‾ 0 Q \overline P_0Q P0Q的一侧.,点 Q Q Q是平面 Π \Pi Π中曲线 C C C的高度函数的极小值点,故直线 P ‾ 0 Q \overline P_{0}Q P0Q是曲线 C C C在点 Q Q Q的切线.因此,曲线 C C C 必是直线.因此 , S ,S ,S 由过定点的直线构成,是锥面.