求球面相应的诸微分形式 ω 1 , ω 2 , ω 12 , ω 13 , ω 23 \omega_1,\omega_2,\omega_{12},\omega_{13},\omega_{23} ω1,ω2,ω12,ω13,ω23 ;
解:
球面 r ( u , v ) = ( a cos u cos v , a cos u sin v , a sin u ) \mathbf{r}(u,v)=\left(a\cos u\cos v,a\cos u\sin v,a\sin u\right) r(u,v)=(acosucosv,acosusinv,asinu),
相应的
ω 1 = a d u ω 2 = a cos u d v \omega_1=a\mathrm{d}u\\\omega_2=a\cos u\mathrm{d}v ω1=aduω2=acosudv
求其外微分得
d ω 1 = 0 d ω 2 = − a sin u d u ∧ d v \mathrm{d}\omega_1=0\\\mathrm{d}\omega_2=-a\sin u\mathrm{d}u\wedge\mathrm{d}v dω1=0dω2=−asinudu∧dv
注意到关系得
{ d ω 1 = ω 2 ∧ ω 21 d ω 2 = ω 1 ∧ ω 12 } \boxed{ \begin{Bmatrix} \mathrm{d}\omega_{1}=\omega_{2}\wedge\omega_{21} \\ \mathrm{d}\omega_{2}=\omega_{1}\wedge\omega_{12} \end{Bmatrix}} {dω1=ω2∧ω21dω2=ω1∧ω12}
代入有
{ 0 = a cos u d v ∧ ω 21 − a sin u d u ∧ d v = a d u ∧ ω 12 \left.\begin{cases}0=a\cos u\mathrm{d}v\wedge\omega_{21}\\-a\sin u\mathrm{d}u\wedge\mathrm{d}v=a\mathrm{d}u\wedge\omega_{12}&\end{cases}\right. {0=acosudv∧ω21−asinudu∧dv=adu∧ω12
也就是
{ 0 = d v ∧ ω 21 − sin u d u ∧ d v = d u ∧ ω 12 \begin{cases}0=\mathrm{d}v\wedge\omega_{21}\\-\sin u\mathrm{d}u\wedge\mathrm{d}v=\mathrm{d}u\wedge\omega_{12}&&\end{cases} {0=dv∧ω21−sinudu∧dv=du∧ω12
解得
ω 12 = − sin u d v \omega_{12}=-\sin u\mathrm{d}v ω12=−sinudv
类似地,求得 ω 13 , ω 23 \omega_{13},\omega_{23} ω13,ω23 。
它满足
( ω 13 ω 23 ) = ( ω 1 ω 2 ) ( a b b c ) {(\omega_{13}\quad\omega_{23})=(\omega_1\quad\omega_2)\begin{pmatrix}a&b\\b&c\end{pmatrix}} (ω13ω23)=(ω1ω2)(abbc)
这里,系数 a , b , c a,b,c a,b,c由第二基本型 I I = a ( ω 1 ) 2 + 2 b ω 1 ω 2 + c ( ω 2 ) 2 II=a(\omega_1)^2+2b\omega_1\omega_2+c(\omega_2)^2 II=a(ω1)2+2bω1ω2+c(ω2)2确定。
本题的第二基本型是 L L Ld u u ud u + 2 M u+2M u+2Md u u ud v + N v+N v+Nd v v vd v v v
它是 L E ( ω 1 ) 2 + 2 M E G ω 1 ω 2 + N G ( ω 2 ) 2 \frac LE(\omega_1)^2+2\frac M{\sqrt{E}\sqrt{G}}\omega_1\omega_2+\frac NG(\omega_2)^2 EL(ω1)2+2EGMω1ω2+GN(ω2)2
于是
( ω 13 ω 23 ) = ( E d u G d v ) ( L E M E G M E G N G ) = ( L E d u + M E d v M G d u + N G d v ) \begin{aligned}(\omega_{13}\quad\omega_{23})&=\begin{pmatrix}\sqrt{E}\mathrm{d}u&\sqrt{G}\mathrm{d}v\end{pmatrix}\begin{pmatrix}\frac LE&\frac M{\sqrt{E}\sqrt{G}}\\\frac M{\sqrt{E}\sqrt{G}}&\frac NG\end{pmatrix}\\&=\left(\frac L{\sqrt{E}}\mathrm{d}u+\frac M{\sqrt{E}}\mathrm{d}v\quad\frac M{\sqrt{G}}\mathrm{d}u+\frac N{\sqrt{G}}\mathrm{d}v\right)\end{aligned} (ω13ω23)=(EduGdv)(ELEGMEGMGN)=(ELdu+EMdvGMdu+GNdv)
现在代入验证就可以了
L = a , M = 0 , N = a cos 2 u L=a,M=0,N=a\cos^2u L=a,M=0,N=acos2u
代入便得到
( ω 13 ω 23 ) = ( d u cos u d v ) (\omega_{13}\quad\omega_{23})=(\mathrm{~d}u\quad\cos u\mathrm{d}v) (ω13ω23)=( ducosudv)