球面的微分形式

求球面相应的诸微分形式 ω 1 , ω 2 , ω 12 , ω 13 , ω 23 \omega_1,\omega_2,\omega_{12},\omega_{13},\omega_{23} ω1,ω2,ω12,ω13,ω23 ;

解:

球面 r ( u , v ) = ( a cos ⁡ u cos ⁡ v , a cos ⁡ u sin ⁡ v , a sin ⁡ u ) \mathbf{r}(u,v)=\left(a\cos u\cos v,a\cos u\sin v,a\sin u\right) r(u,v)=(acosucosv,acosusinv,asinu),

相应的

ω 1 = a d u ω 2 = a cos ⁡ u d v \omega_1=a\mathrm{d}u\\\omega_2=a\cos u\mathrm{d}v ω1=aduω2=acosudv

求其外微分得

d ω 1 = 0 d ω 2 = − a sin ⁡ u d u ∧ d v \mathrm{d}\omega_1=0\\\mathrm{d}\omega_2=-a\sin u\mathrm{d}u\wedge\mathrm{d}v dω1=0dω2=asinududv

注意到关系得

{ d ω 1 = ω 2 ∧ ω 21 d ω 2 = ω 1 ∧ ω 12 } \boxed{ \begin{Bmatrix} \mathrm{d}\omega_{1}=\omega_{2}\wedge\omega_{21} \\ \mathrm{d}\omega_{2}=\omega_{1}\wedge\omega_{12} \end{Bmatrix}} {dω1=ω2ω21dω2=ω1ω12}

代入有

{ 0 = a cos ⁡ u d v ∧ ω 21 − a sin ⁡ u d u ∧ d v = a d u ∧ ω 12 \left.\begin{cases}0=a\cos u\mathrm{d}v\wedge\omega_{21}\\-a\sin u\mathrm{d}u\wedge\mathrm{d}v=a\mathrm{d}u\wedge\omega_{12}&\end{cases}\right. {0=acosudvω21asinududv=aduω12

也就是

{ 0 = d v ∧ ω 21 − sin ⁡ u d u ∧ d v = d u ∧ ω 12 \begin{cases}0=\mathrm{d}v\wedge\omega_{21}\\-\sin u\mathrm{d}u\wedge\mathrm{d}v=\mathrm{d}u\wedge\omega_{12}&&\end{cases} {0=dvω21sinududv=duω12

解得

ω 12 = − sin ⁡ u d v \omega_{12}=-\sin u\mathrm{d}v ω12=sinudv

类似地,求得 ω 13 , ω 23 \omega_{13},\omega_{23} ω13,ω23

它满足

( ω 13 ω 23 ) = ( ω 1 ω 2 ) ( a b b c ) {(\omega_{13}\quad\omega_{23})=(\omega_1\quad\omega_2)\begin{pmatrix}a&b\\b&c\end{pmatrix}} (ω13ω23)=(ω1ω2)(abbc)

这里,系数 a , b , c a,b,c a,b,c由第二基本型 I I = a ( ω 1 ) 2 + 2 b ω 1 ω 2 + c ( ω 2 ) 2 II=a(\omega_1)^2+2b\omega_1\omega_2+c(\omega_2)^2 II=a(ω1)2+2bω1ω2+c(ω2)2确定。

本题的第二基本型是 L L Ld u u ud u + 2 M u+2M u+2Md u u ud v + N v+N v+Nd v v vd v v v

它是 L E ( ω 1 ) 2 + 2 M E G ω 1 ω 2 + N G ( ω 2 ) 2 \frac LE(\omega_1)^2+2\frac M{\sqrt{E}\sqrt{G}}\omega_1\omega_2+\frac NG(\omega_2)^2 EL(ω1)2+2E G Mω1ω2+GN(ω2)2

于是

( ω 13 ω 23 ) = ( E d u G d v ) ( L E M E G M E G N G ) = ( L E d u + M E d v M G d u + N G d v ) \begin{aligned}(\omega_{13}\quad\omega_{23})&=\begin{pmatrix}\sqrt{E}\mathrm{d}u&\sqrt{G}\mathrm{d}v\end{pmatrix}\begin{pmatrix}\frac LE&\frac M{\sqrt{E}\sqrt{G}}\\\frac M{\sqrt{E}\sqrt{G}}&\frac NG\end{pmatrix}\\&=\left(\frac L{\sqrt{E}}\mathrm{d}u+\frac M{\sqrt{E}}\mathrm{d}v\quad\frac M{\sqrt{G}}\mathrm{d}u+\frac N{\sqrt{G}}\mathrm{d}v\right)\end{aligned} (ω13ω23)=(E duG dv)(ELE G ME G MGN)=(E Ldu+E MdvG Mdu+G Ndv)

现在代入验证就可以了

L = a , M = 0 , N = a cos ⁡ 2 u L=a,M=0,N=a\cos^2u L=a,M=0,N=acos2u

代入便得到

( ω 13 ω 23 ) = (   d u cos ⁡ u d v ) (\omega_{13}\quad\omega_{23})=(\mathrm{~d}u\quad\cos u\mathrm{d}v) (ω13ω23)=( ducosudv)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

F_D_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值