全脐点曲面当且仅当平面或者球面的一部分

S  是全脐点曲面当且仅当  S  是平面或者球面的一部分。 S_\text{ 是全脐点曲面当且仅当 }{S_\text{ 是平面或者球面的一部分。}} S 是全脐点曲面当且仅当 S 是平面或者球面的一部分。

证:

充分性显然,下证必要性。

r ( u , v ) r(u,v) r(u,v)是全脐点曲面,设其在 ( u , v ) (u,v) (u,v)处的主曲率为 k ( u , v ) k(u,v) k(u,v),则有 L = k E , M = k F , N = k G L=kE,M=kF,N=kG L=kE,M=kF,N=kG

k = L / E k=L/E k=L/E是光滑的,并且

⟨ n u + k r u , r u ⟩ = − L + k E = 0 \langle n_u+kr_u,r_u\rangle=-L+kE=0 nu+kru,ru=L+kE=0
⟨ n u + k r u , r v ⟩ = − M + k F = 0 ⟨ n u + k r u , n ⟩ = 0 \begin{aligned}&\langle n_u+kr_u,r_v\rangle=-M+kF=0\\&\langle n_u+kr_u,n\rangle=0\end{aligned} nu+kru,rv=M+kF=0nu+kru,n=0

从而 n u + k r u = 0 n_u+kr_u=0 nu+kru=0,同理 n v + k r v = 0 n_v+kr_v=0 nv+krv=0

两式求偏导数再相减,得到 k v r u − k u r v = 0 k_vr_u-k_ur_v=0 kvrukurv=0,从而 k u = k v = 0 k_u=k_v=0 ku=kv=0,从而 k k k是常值函数。

分两种情况讨论
1. k = 0 k=0 k=0,则带入上式看出 n n n是常向量,从而 S S S是平面;
2. k ≠ 0 k\neq0 k=0,则 a : = n + k r a:=n+kr a:=n+kr是常向量,则 ∣ r − a k ∣ = ∣ k n ∣ = 1 ∣ k ∣ |r-\frac ak|=|\frac kn|=\frac1{|k|} rka=nk=k1。从而 S S S是半径为 1 ∣ k ∣ \frac1{|k|} k1的球面的一部分。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

F_D_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值