前缀和与差分

文章介绍了前缀和的概念及其在解决数组区间和查询问题中的高效性,通过预处理得到前缀和数组,可以将时间复杂度降低到线性。接着讨论了二维前缀和在处理矩阵问题中的应用,以及二维差分如何快速更新矩阵子区域的元素。文章强调了差分操作在数组修改操作中的高效性,通过修改差分数组可以在常数时间内完成区间加法操作。
摘要由CSDN通过智能技术生成

1. 前缀和

前缀和是指某序列的前n项和,可以把它理解为数学上的数列的前n项和,而差分可以看成前缀和的逆运算。合理的使用前缀和与差分,可以将某些复杂的问题简单化。

在这里插入图片描述

2. 前缀和算法有什么好处

先来了解这样一个问题:

输入一个长度为 n n n的整数序列。接下来再输入 m m m个询问,每个询问输入一对 l , r l, r l,r。对于每个询问,输出原序列中从第 l l l个数到第 r r r个数的和。

我们很容易想出暴力解法,遍历区间求和。

代码如下:

const int N = 1e5 + 10;
int a[N];
int n,m;
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
while(m--)
{
    int l, r;
    int sum = 0;
    scanf("%d%d", &l, &r);
    for(int i = l; i <= r; i++)
    { 
        sum += a[i];
    }
    printf("%d\n",sum);
}

这样的时间复杂度为 O ( n × m ) O(n \times m) O(n×m),如果 n n n m m m的数据量稍微大一点就有可能超时,而我们如果使用前缀和的方法来做的话就能够将时间复杂度降到 O ( n + m ) O(n + m) O(n+m),大大提高了运算效率。

具体做法:

首先做一个预处理,定义一个 s u m [ ] sum[] sum[]数组, s u m [ i ] sum[i] sum[i]代表 a a a数组中前i个数的和。

求前缀和运算:

const int N = 1e5 + 10;
int sum[N], a[N]; //sum[i]=a[1]+a[2]+a[3].....a[i];
for(int i = 1;i <= n; i++)
{ 
    sum[i] = sum[i - 1] + a[i];   
}

然后查询操作:

 scanf("%d%d",&l,&r);
 printf("%d\n", sum[r] - sum[l - 1]);

对于每次查询,只需执行 s u m [ r ] − s u m [ l − 1 ] sum[r] - sum[l - 1] sum[r]sum[l1],时间复杂度为 O ( 1 ) O(1) O(1)

原理

sum[r] = a[1] + a[2] + a[3] + a[l-1] + a[l] + a[l + 1] ...... a[r];
sum[l - 1] = a[1] + a[2] + a[3] + a[l - 1];
sum[r] - sum[l - 1] = a[l] + a[l + 1] + ......+ a[r];

图解
在这里插入图片描述
这样,对于每个询问,只需要执行 s u m [ r ] − s u m [ l − 1 ] sum[r] - sum[l - 1] sum[r]sum[l1]。输出原序列中从第l个数到第r个数的和的时间复杂度变成了 O ( 1 ) O(1) O(1)

我们把它叫做一维前缀和

总结:
在这里插入图片描述

练习一道题目
输入一个长度为 n n n的整数序列。
接下来再输入 m m m个询问,每个询问输入一对 l , r l, r l,r
对于每个询问,输出原序列中从第 l l l个数到第 r r r个数的和。
输入格式
第一行包含两个整数 n n n m m m
第二行包含n个整数,表示整数数列。
接下来m行,每行包含两个整数l和r,表示一个询问的区间范围。
输出格式
m m m行,每行输出一个询问的结果。
数据范围
1 ≤ l ≤ r ≤ n 1 \le l \le r \le n 1lrn,
1 ≤ n , m ≤ 100000 1 \le n,m \le 100000 1n,m100000,
− 1000 ≤ 数列中元素的值 ≤ 1000 −1000 \le 数列中元素的值 \le 1000 1000数列中元素的值1000
输入样例:

5 3
2 1 3 6 4
1 2
1 3
2 4

输出样例:

3
6
10

代码:

#include <iostream>
using namespace std;

const int N = 100010;
int n, m;
int a[N], s[N];

int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i ++ ) scanf("%d", &a[i]);

    for (int i = 1; i <= n; i ++ ) s[i] = s[i - 1] + a[i]; // 前缀和的初始化

    while (m -- )
    {
        int l, r;
        scanf("%d%d", &l, &r);
        printf("%d\n", s[r] - s[l - 1]); // 区间和的计算
    }

    return 0;
}

3. 二维前缀和

如果数组变成了二维数组怎么办呢?

先给出问题:

输入一个 n n n m m m列的整数矩阵,再输入 q q q个询问,每个询问包含四个整数 x 1 , y 1 , x 2 , y 2 x1, y1, x2, y2 x1,y1,x2,y2,表示一个子矩阵的左上角坐标和右下角坐标。对于每个询问输出子矩阵中所有数的和。

同一维前缀和一样,我们先来定义一个二维数组 s [ ] [ ] s[][] s[][] , s [ i ] [ j ] s[i][j] s[i][j] 表示二维数组中,左上角 ( 1 , 1 ) (1, 1) (1,1)到右下角 ( i , j ) (i, j) (i,j)所包围的矩阵元素的和。接下来推导二维前缀和的公式。

先看一张图:
在这里插入图片描述

紫色面积是指 ( 1 , 1 ) (1, 1) (1,1)左上角到 ( i , j − 1 ) (i, j - 1) (i,j1)右下角的矩形面积, 绿色面积是指 ( 1 , 1 ) (1, 1) (1,1)左上角到 ( i − 1 , j ) (i - 1, j ) (i1,j)右下角的矩形面积。每一个颜色的矩形面积都代表了它所包围元素的和。

从图中我们很容易看出,整个外围蓝色矩形面积 s [ i ] [ j ] = s[i][j] = s[i][j]= 绿色面积 s [ i − 1 ] [ j ] + s[i - 1][j] + s[i1][j]+ 紫色面积 s [ i ] [ j − 1 ] − s[i][j - 1] - s[i][j1] 重复加的红色的面积 s [ i − 1 ] [ j − 1 ] + s[i - 1][j - 1] + s[i1][j1]+ 小方块的面积 a [ i ] [ j ] ; a[i][j]; a[i][j];

因此得出二维前缀和预处理公式

s [ i ] [ j ] = s [ i − 1 ] [ j ] + s [ i ] [ j − 1 ] + a [ i ] [ j ] − s [ i − 1 ] [ j − 1 ] s[i][j] = s[i - 1][j] + s[i][j - 1 ] + a[i] [j] - s[i - 1][j - 1] s[i][j]=s[i1][j]+s[i][j1]+a[i][j]s[i1][j1]

接下来回归问题去求以 ( x 1 , y 1 ) (x1,y1) (x1,y1)为左上角和以 ( x 2 , y 2 ) (x2,y2) (x2,y2)为右下角的矩阵的元素的和。

如图:
在这里插入图片描述

紫色面积是指 ( 1 , 1 ) (1, 1) (1,1)左上角到 ( x 1 − 1 , y 2 ) (x1 - 1, y2) (x11,y2)右下角的矩形面积 ,黄色面积是指 ( 1 , 1 ) (1, 1) (1,1)左上角到 ( x 2 , y 1 − 1 ) (x2, y1 - 1) (x2,y11)右下角的矩形面积;

不难推出:
在这里插入图片描述

绿色矩形的面积 = = = 整个外围面积 s [ x 2 , y 2 ] − s[x2, y2] - s[x2,y2] 黄色面积 s [ x 2 , y 1 − 1 ] − s[x2, y1 - 1] - s[x2,y11] 紫色面积 s [ x 1 − 1 , y 2 ] + s[x1 - 1, y2] + s[x11,y2]+ 重复减去的红色面积 s [ x 1 − 1 , y 1 − 1 ] s[x1 - 1, y1 - 1] s[x11,y11]

因此二维前缀和的结论为:

( x 1 , y 1 ) (x1, y1) (x1,y1)为左上角, ( x 2 , y 2 ) (x2, y2) (x2,y2)为右下角的子矩阵的和为:
s [ x 2 , y 2 ] − s [ x 1 − 1 , y 2 ] − s [ x 2 , y 1 − 1 ] + s [ x 1 − 1 , y 1 − 1 ] s[x2, y2] - s[x1 - 1, y2] - s[x2, y1 - 1] + s[x1 - 1, y1 - 1] s[x2,y2]s[x11,y2]s[x2,y11]+s[x11,y11]

总结:
在这里插入图片描述

练习一道完整题目:
输入一个 n n n m m m列的整数矩阵,再输入 q q q个询问,每个询问包含四个整数 x 1 , y 1 , x 2 , y 2 x1, y1, x2, y2 x1,y1,x2,y2,表示一个子矩阵的左上角坐标和右下角坐标。

对于每个询问输出子矩阵中所有数的和。

输入格式
第一行包含三个整数 n n n m m m q q q

接下来 n n n行,每行包含 m m m个整数,表示整数矩阵。

接下来 q q q行,每行包含四个整数 x 1 , y 1 , x 2 , y 2 x1, y1, x2, y2 x1,y1,x2,y2,表示一组询问。

输出格式

q q q行,每行输出一个询问的结果。

数据范围

1 ≤ n , m ≤ 1000 1 \le n,m \le 1000 1n,m1000,
1 ≤ q ≤ 200000 1 \le q \le 200000 1q200000,
1 ≤ x 1 ≤ x 2 ≤ n 1 \le x1 \le x2 \le n 1x1x2n,
1 ≤ y 1 ≤ y 2 ≤ m 1 \le y1 \le y2 \le m 1y1y2m,
− 1000 ≤ 矩阵内元素的值 ≤ 1000 −1000 \le 矩阵内元素的值 \le 1000 1000矩阵内元素的值1000

输入样例:

3 4 3
1 7 2 4
3 6 2 8
2 1 2 3
1 1 2 2
2 1 3 4
1 3 3 4

输出样例:

17
27
21

代码:

#include <iostream>
using namespace std;
const int N = 1010;
int n, m, q;
int s[N][N];
int main()
{
    scanf("%d%d%d", &n, &m, &q);
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= m; j ++ )
            scanf("%d", &s[i][j]);
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= m; j ++ )
            s[i][j] += s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1];
    while (q -- )
    {
        int x1, y1, x2, y2;
        scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
        printf("%d\n", s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1]);
    }
    return 0;
}

4. 差分

在这里插入图片描述

5. 一维差分

类似于数学中的求导和积分,差分可以看成前缀和的逆运算

差分数组:

首先给定一个原数组 a a a a 1 , a 2 , a 3 , . . . , a n ; a_1, a_2, a_3, ... , a_n; a1,a2,a3,...,an;

然后我们构造一个数组 b b b b 1 , b 2 , b 3 , . . . , b i ; b_1, b_2, b_3, ... , b_i; b1,b2,b3,...,bi;

使得 a i = b 1 + b 2 + b 3 + , . . . , + b i a_i = b_1 + b_2 + b_3 + ,..., + b_i ai=b1+b2+b3+,...,+bi

也就是说, a a a数组是 b b b数组的前缀和数组,反过来我们把 b b b数组叫做 a a a数组的差分数组。换句话说,每一个 a i a_i ai都是 b b b数组中从头开始的一段区间和。

考虑如何构造差分 b b b数组?

最为直接的方法

如下:

a 0 = 0 ; a_0 = 0; a0=0;

b 1 = a 1 − a 0 ; b_1 = a_1 - a_0; b1=a1a0;

b 2 = a 2 − a 1 ; b_2 = a_2 - a_1; b2=a2a1;

b 3 = a 3 − a 2 ; b_3 = a_3 - a_2; b3=a3a2;

b n = a n − a n − 1 ; b_n = a_n - a_{n-1}; bn=anan1;

图示:
在这里插入图片描述

我们只要有 b b b数组,通过前缀和运算,就可以在 O ( n ) O(n) O(n) 的时间内得到 a a a 数组 。

知道了差分数组有什么用呢? 别着急,慢慢往下看。

话说有这么一个问题:

给定区间 [ l , r ] [l, r ] [l,r],让我们把 a a a数组中的 [ l , r ] [l, r] [l,r] 区间中的每一个数都加上 c c c,即 a l + c a_l + c al+c , a l + 1 + c a_{l+1} + c al+1+c , a l + 2 + c a_{l + 2} + c al+2+c ,…, a r + c a_r + c ar+c;

暴力做法是 f o r for for循环 l l l r r r区间,时间复杂度 O ( n ) O(n) O(n),如果我们需要对原数组执行 m m m次这样的操作,时间复杂度就会变成 O ( n × m ) O(n \times m) O(n×m)。有没有更高效的做法吗? 考虑差分做法,(差分数组派上用场了)。

始终要记得, a a a数组是 b b b数组的前缀和数组,比如对 b b b数组的 b i b_i bi的修改,会影响到 a a a数组中从 a i a_i ai及往后的每一个数。

首先让差分b数组中的 b l + c b_l + c bl+c ,通过前缀和运算, a a a数组变成 a l + c , a l + 1 + c , . . . , a n + c ; a_l + c ,a_{l+1} + c,..., a_n + c; al+c,al+1+c,...,an+c;

然后我们打个补丁, b [ r + 1 ] − c b[r + 1] - c b[r+1]c, 通过前缀和运算, a a a数组变成 a r + 1 − c , a r + 2 − c , . . . , a n − c ; a_{r + 1} - c,a_{r + 2} - c,...,a_n - c; ar+1c,ar+2c,...,anc;

为啥还要打个补丁?

我们画个图理解一下这个公式的由来:
在这里插入图片描述
b[l] + c,效果使得a数组中 a[l] 及以后的数都加上了c(红色部分),但我们只要求l到r 区间加上 c, 因此还需要执行 b[r + 1] - c,让a数组中 a[r + 1]及往后的区间再减去c(绿色部分),这样对于a[r] 以后区间的数相当于没有发生改变。

因此我们得出一维差分结论:给a数组中的[ l, r] 区间中的每一个数都加上c,只需对差分数组b做 b[l] + = c, b[r+1] - = c 。时间复杂度为O(1), 大大提高了效率。

总结:
在这里插入图片描述
题目练习: AcWing 797. 差分

输入一个长度为n的整数序列。
接下来输入m个操作,每个操作包含三个整数l, r, c,表示将序列中[l, r]之间的每个数加上c。
请你输出进行完所有操作后的序列。

输入格式
第一行包含两个整数n和m。
第二行包含n个整数,表示整数序列。
接下来m行,每行包含三个整数l,r,c,表示一个操作。
输出格式
共一行,包含n个整数,表示最终序列。
数据范围

1≤n,m≤100000,
1≤l≤r≤n,
−1000≤c≤1000,
−1000≤整数序列中元素的值≤1000

输入样例:

6 3
1 2 2 1 2 1
1 3 1
3 5 1
1 6 1

输出样例:

3 4 5 3 4 2

AC代码

#include<iostream>
using namespace std;
const int N = 1e5 + 10;
int a[N],b[N]; 
int main()
{
    int n,m;
    scanf("%d%d", &n, &m);
    for(int i = 1;i <= n; i++) 
    {
        scanf("%d", &a[i]);
        b[i] = a[i] - a[i - 1];      //构建差分数组
    }
    int l, r, c;
    while(m--)
    {
        scanf("%d%d%d", &l, &r, &c);
        b[l] += c;     //表示将序列中[l, r]之间的每个数加上c
        b[r + 1] -= c;
    }
    for(int i = 1;i <= n; i++) 
    {
        b[i] += b[i - 1];  //求前缀和运算
        printf("%d ",b[i]);
    }
    return 0;
}

6、二维差分
如果扩展到二维,我们需要让二维数组被选中的子矩阵中的每个元素的值加上c,是否也可以达到O(1)的时间复杂度。答案是可以的,考虑二维差分。

a[][]数组是b[][]数组的前缀和数组,那么b[][]是a[][]的差分数组

原数组: a[i][j]

我们去构造差分数组: b[i][j]

使得a数组中a[i][j]是b数组左上角(1,1)到右下角(i,j)所包围矩形元素的和。

如何构造b数组呢?

其实关于差分数组,我们并不用考虑其构造方法,因为我们使用差分操作在对原数组进行修改的过程中,实际上就可以构造出差分数组。

同一维差分,我们构造二维差分数组目的是为了 让原二维数组a中所选中子矩阵中的每一个元素加上c的操作,可以由O(n*n)的时间复杂度优化成O(1)

已知原数组a中被选中的子矩阵为 以(x1,y1)为左上角,以(x2,y2)为右下角所围成的矩形区域;

始终要记得,a数组是b数组的前缀和数组,比如对b数组的b[i][j]的修改,会影响到a数组中从a[i][j]及往后的每一个数。

假定我们已经构造好了b数组,类比一维差分,我们执行以下操作
来使被选中的子矩阵中的每个元素的值加上c

b[x1][y1] + = c ;

b[x1,][y2+1] - = c;

b[x2+1][y1] - = c;

b[x2+1][y2+1] + = c;

每次对b数组执行以上操作,等价于:

for(int i = x1;i <= x2;i++)
  for(int j = y1;j <= y2;j++)
    a[i][j] += c;

我们画个图去理解一下这个过程:
在这里插入图片描述

b[x1][y1] += c ; 对应图1 ,让整个a数组中蓝色矩形面积的元素都加上了c。
b[x1,][y2 + 1] -= c ; 对应图2 ,让整个a数组中绿色矩形面积的元素再减去c,使其内元素不发生改变。
b[x2 + 1][y1] -= c ; 对应图3 ,让整个a数组中紫色矩形面积的元素再减去c,使其内元素不发生改变。
b[x2 + 1][y2 + 1] += c; 对应图4,让整个a数组中红色矩形面积的元素再加上c,红色内的相当于被减了两次,再加上一次c,才能使其恢复。
在这里插入图片描述
我们将上述操作封装成一个插入函数:

void insert(int x1,int y1,int x2,int y2,int c)
{     //对b数组执行插入操作,等价于对a数组中的(x1,y1)到(x2,y2)之间的元素都加上了c
    b[x1][y1] += c;
    b[x2 + 1][y1] -= c;
    b[x1][y2 + 1] -= c;
    b[x2 + 1][y2 + 1] += c;
}

我们可以先假想a数组为空,那么b数组一开始也为空,但是实际上a数组并不为空,因此我们每次让以(i,j)为左上角到以(i,j)为右下角面积内元素(其实就是一个小方格的面积)去插入 c = a[i][j] ,等价于原数组a中(i,j) 到(i,j)范围内 加上了 a[i][j] ,因此执行 n*m次插入操作,就成功构建了差分b数组.

这叫做曲线救国。

代码如下:

for(int i = 1;i <= n;i++)
{
    for(int j = 1;j <= m;j++)
    {
        insert(i, j, i, j, a[i][j]);    //构建差分数组
    }
}

当然关于二维差分操作也有直接的构造方法,公式如下:

b[i][j] = a[i][j] − a[i − 1][j] − a[i][j − 1] + a[i −1 ][j − 1]

二维差分数组的构造同一维差分思维相同,因次在这里就不再展开叙述了。

总结:
在这里插入图片描述
题目练习: AcWing 798. 差分矩阵
输入一个n行m列的整数矩阵,再输入q个操作,每个操作包含五个整数x1, y1, x2, y2, c,其中(x1, y1)和(x2, y2)表示一个子矩阵的左上角坐标和右下角坐标。
每个操作都要将选中的子矩阵中的每个元素的值加上c。
请你将进行完所有操作后的矩阵输出。
输入格式
第一行包含整数n, m, q。
接下来n行,每行包含m个整数,表示整数矩阵。
接下来q行,每行包含5个整数x1, y1, x2, y2, c,表示一个操作。
输出格式
共 n 行,每行 m 个整数,表示所有操作进行完毕后的最终矩阵。
数据范围

1≤n,m≤1000,
1≤q≤100000,
1≤x1≤x2≤n,
1≤y1≤y2≤m,
−1000≤c≤1000,
−1000≤矩阵内元素的值≤1000

输入样例:

3 4 3
1 2 2 1
3 2 2 1
1 1 1 1
1 1 2 2 1
1 3 2 3 2
3 1 3 4 1

输出样例:

2 3 4 1
4 3 4 1
2 2 2 2

AC代码:

#include<iostream>
#include<cstdio>
using namespace std;
const int N = 1e3 + 10;
int a[N][N], b[N][N];
void insert(int x1, int y1, int x2, int y2, int c)
{
    b[x1][y1] += c;
    b[x2 + 1][y1] -= c;
    b[x1][y2 + 1] -= c;
    b[x2 + 1][y2 + 1] += c;
}
int main()
{
    int n, m, q;
    cin >> n >> m >> q;
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= m; j++)
            cin >> a[i][j];
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= m; j++)
        {
            insert(i, j, i, j, a[i][j]);      //构建差分数组
        }
    }
    while (q--)
    {
        int x1, y1, x2, y2, c;
        cin >> x1 >> y1 >> x2 >> y2 >> c;
        insert(x1, y1, x2, y2, c);
    }
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= m; j++)
        {
            b[i][j] += b[i - 1][j] + b[i][j - 1] - b[i - 1][j - 1];  //二维前缀和
        }
    }
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= m; j++)
        {
            printf("%d ", b[i][j]);
        }
        printf("\n");
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值