前言
YOLO v3(You Only Look Once version 3)是一种快速且准确的目标检测算法,与YOLO v1 和 YOLO v2 相比,在保持高速度的同时,显著提升了检测的精度,特别是在小物体检测方面表现出色。以下是对YOLO v3的详细解析:
一、算法特点
-
单阶段检测方法:
- YOLO v3采用单阶段检测方法,将目标检测问题转化为回归问题,使用单个神经网络直接从完整图像预测边界框和类别概率。
- 这种端到端的方法使得YOLO v3能够以极快的速度进行实时目标检测。
- 下图左边为YOLO系列的检测过程,右边为传统目标检测过程
-
Darknet-53主干网络:
- YOLO v3使用Darknet-53作为特征提取网络,它包含53个卷积层,并引入了残差连接。
- Darknet-53的性能优于ResNet-101,且速度快于ResNet-152,为YOLO v3提供了强大的特征提取能力。
- 结构如下图: