二、极限(重点)与连续:

本文详细介绍了数学中的极限概念,包括数列极限、函数极限的定义、四则运算规则以及复合函数的极限法则。讨论了重要极限、无穷小和无穷大的概念,以及初等函数和闭区间上连续函数的性质,如有界性、零点定理和介值定理。
摘要由CSDN通过智能技术生成

开始第一篇博客测试

函数,极限和连续

二、极限(重点)

2.1 极限的概念
  • 从某个值无限接近(极限),“lim” 代表极限

  • lim 因变量=0无穷小,lim 因变量=∞无穷大,“∞” 代表无穷

  • 表达式:lim 因变量 = 极限值

    例:lim (肉包子)=馒头,肉馅从有到无限为0

2.2 数列的极限

1.数列的概念:一列有规律的数,对每个n,对应一个确定的实数(数列一定是无穷多项

2.数列极限的概念:无穷趋近,描述了数列中元素随着项数趋于无穷大时的行为

3.收敛数列的性质:

  • 必有极限,且极限唯一;
  • 一定有界;
  • 有界数列不一定收敛{(-1)^n},单调且有界的数列一定收敛;;单调有界数列必有极限
4.夹逼准则(考试有):

若yn<xn<zn;lim yn=a,lim zn=a(lim的n→∞),则lim xn=a

例:求lim(1/n^2+n+1 + 2/n^2+n+2 + ... + n/n^2+n+n)的极限为 
	利用夹逼准则,Yn=1/n^2+n+n + 2/n^2+n+n + ... + n/n^2+n+n
			      =0.5n(n+1)/n^2+n+n
			      =n^2+n/2n^2+4n
			    Zn=1/n^2+n+1 + 2/n^2+n+1 + ... + n/n^2+n+1
			      =0.5n(n+1)/n^2+n+1
			      =n^2+n/2n^2+n+1
			      =(1+1/n)/(2+1/n+1/n^2)
	limYn = Yn÷n^2=(1+1/n)/(2+4/n)=1/2 (除去有未知数的)
	limYn = Zn÷n^2=(1+1/n)/(2+1/n+1/1/n^2)=1/2 (除去有未知数的)
		所以yn<xn<zn,极限为1/2

g g g

2.3 函数的极限

1.函数极限的概念:在自变量的某个变化过程中,如果对应的函数值无限接近于某个确定的数,那么这个确定的数就叫做在这一变化过程中函数的极限。

在这里插入图片描述

2.函数的极限的四则运算

  • 加减法法则: 如果极限存在,即 lim(x->a) f(x) = A 和 lim(x->a) g(x) = B,那么对于任意实数 a 及其邻域内(除 a 以外)的所有 x,有 lim(x->a) [f(x) ± g(x)] = A ± B。
  • 乘法法则: 若 lim(x->a) f(x) = A 和 lim(x->a) g(x) = B,并且至少有一个极限值 A 或 B 不为零,那么 lim(x->a) [f(x) * g(x)] = A * B。
  • 除法法则: 若 lim(x->a) f(x) = A 和 lim(x->a) g(x) = B,同时 B ≠ 0,则 lim(x->a) [f(x) / g(x)] = A / B。
2.4 复合函数的极限运算法则

​ 复合函数的极限运算法则描述了在一定条件下,当自变量趋向某个值时,复合函数内部各部分函数极限的运算规则。

2.5 两个重要极限(考试出题点)

​ 1.第一重要极限:limsinx/x=1 ,lim的x→0;(0/0型)

在这里插入图片描述

​ 2.第二重要极限:lim(1+1/x)^x =e ,lim的x→∞;(e=2.718… )
在这里插入图片描述

2.6 无穷小无穷大(考试出题点)
  • 无穷小:limf(x)=0,(lim的x→x0或∞) / 当 x 趋近于某个点时其绝对值无限接近于零,则称f*(x) 是当 x→a* 时的无穷小。
  • 无穷大:limf(x)=∞,(lim的x→x0或∞) / 随着 fx 趋近于某一点或趋近于无穷大时,它的绝对值无界且不断增大。

1.无穷小的性质:

  1. 1/无穷小=无穷大,1/无穷大=无穷小
  2. 有限个无穷小的和是无穷小
  3. 有界函数与无穷小的乘积是无穷小

2.无穷小的比较:
在这里插入图片描述

3.等价无穷小的性质:

  • 自反性:a∽a
  • 对称性:若a∽b,则b∽a
  • 传递性:若a∽b,b∽c,则a∽c\
  • 可替换性:若a∽c,b∽d,则 lim a/b = lim c∽d

4.常用的等价无穷小替换(考):

  1. 当x趋近于0时:
    • (1+x)^n ~ 1+nx (对于任意常数n)
    • sin(x) ~ x
    • cos(x) ~ 1 (这里是指cos(x)-1 ~ -0.5x^2)
    • tan(x) ~ x (对于x在不等于(k+1/2)π的区间内)
    • e^x - 1 ~ x (自然指数函数e^x的麦克劳林展开)
    • ln(1+x) ~ x (对数函数ln(1+x)的泰勒展开)
  2. 当x趋近于无穷大时:
    • (1+1/x)^x ~ e (这个是e的定义式)
    • ln(x) ~ x^(1/n) (当n趋于无穷大时,适用于x>1的情形)

连续性

2.7 连续的概念

​ 设函数f(x)在点x₀的邻域内有定义,若满足 limf(x)=f(x0),(lim的x→x0) 条件,则称f(x)在点x₀处连续

  • 左连续: (f(x0^-)) 表示,函数f(x)在点x₀处左连续,指的是对于任意给定的正数ε(无论多小),总能找到一个正数δ,使得当x满足条件x₀ - δ < x ≤ x₀时,函数值的变动范围不超过ε;

  • 右连续: (f(x0^+)) 表示,函数f(x)在点x₀处右连续,与左连续类似,但关注的是x从右边接近x₀的情况;

    函数f(x)在点x0出连续的充要条件为: (f(x0^-)) = (f(x0^+)) = (f(x0))
    
  • 间断点:函数f(x)在点x0处不连续,则点x0是f(x)的间断点

在这里插入图片描述

  1. 间断点-第一类-可去间断点

    ​ 若左极限(f(x0-))和右极限(f(x0+))都存在,且(f(x0^-)) = (f(x0^+)),则x0为f(x)的可去间断点

    例:y=(x^2-1)/(x-1)、 y=x,x≠1/y=1/2,x=1(分段函数) 或 x=1 是y可去间断点

  2. 间断点-第一类-跳跃间断点

    ​ 若左极限(f(x0-))和右极限(f(x0+))都存在,且(f(x0^-)) ≠ (f(x0^+)),则x0为f(x)的跳跃间断点

    例:分段函数

  3. 间断点-第二类-无穷间断点

    ​ 若左极限(f(x0-))和右极限(f(x0+))至少有一个不存在,且至少有一个∞,则x0为f(x)的无穷间断点

    例:y=tanx, x=π/2 是y的无穷间断点

  4. 间断点-第二类-振荡间断点

    ​ 若左极限(f(x0-))和右极限(f(x0+))至少有一个不存在,且至少有一个振荡(图像波动大),则x0为f(x)的振荡间断点

    例:y=sin 1/x, x=0 是y的振荡间断点

2.8 初等函数的连续性
  1. 所有基本初等函数在其定义区间内都是连续;
  2. 若两个函数都连续,则加法、减法、乘法、除法也将保持连续性;
  3. 若两个函数都连续,则复合函数也连续;
  4. 若一个函数连续且有反函数,则反函数也连续。
2.9 闭区间上连续函数的性质
  1. 有界性与最大小值定理: 如果函数在闭区间上连续,在该区间上有界,且一定能取最大值和最小值;
  2. **零点定理:**如果函数 f 在闭区间[a,b]上连续 ,且f(a)*f(b)<0,那么至少存在一点c∈(a,b),使得 f(c)=0;
  3. 介值定理: 函数 f 在闭区间[a,b]上连续,且在区间端点取不同的函数值f(a)=A 即f(b)=B,则AB之间任意一个数C,在开区间(a,b)内至少有一点g,使 f(g)=C;

例题:

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值