第17篇:SHARPNESS-AWARE MINIMIZATION FOR EFFICIENTLYIMPROVING GENERALIZATION(SAM)平坦最小化

第一部分:解决的问题

现代深度学习模型中的泛化问题。

当前的深度学习模型(如大型神经网络)通常具有极高的参数量,可以轻松地拟合训练数据,甚至完全记忆训练集。

尽管这些模型在训练集上表现出很低的损失值,但在未见的测试数据上可能会出现 泛化能力不足(即过拟合)的现象。

第二部分:解决问题使用到的方法

如何同时最小化训练损失值和损失地形的锐度(sharpness)?

论文提出了一种新方法(Sharpness-Aware Minimization, SAM),通过优化损失地形的平坦性(即降低锐度),来提升模型在测试集上的泛化性能。

第三部分:效果优势

论文中通过多个基准数据集(如 CIFAR-10/100、ImageNet)和模型(如 WideResNet、PyramidNet 等)验证了 SAM 的有效性:

图像分类任务(从零开始训练):

SAM 显著提高了模型的泛化性能。例如,在 CIFAR-100 数据集上,使用 SAM 的 WideResNet 模型的错误率从 16.1% 降至 12.8%。

SAM 在多个数据增强策略下(如 Cutout、A

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

还不秃顶的计科生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值