NeurIPS 2022 | 基于稀疏学习的提升模型泛化能力算法

本文探讨了深度学习模型的泛化能力问题,提出了Sparse SAM(SSAM)算法,作为Sharpness-Aware Minimization(SAM)的改进版。SSAM通过稀疏掩码确定需要扰动的参数,减少了计算复杂度。实验表明,SSAM在多个数据集和模型上表现出优于SAM的性能和效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

e1d58786aaf8cce29445beaea9297f08.gif

©PaperWeekly 原创 · 作者 | GlobalTrack

深度学习模型经常遇到较弱的泛化能力等问题。由于损失函数景观(loss landscape)一般是复杂的且非凸,该特性使模型常常收敛到尖锐最小点(Sharp Minima)。一般认为最小值点附近越平滑,模型泛化能力越强。 

Sharpness-Aware Minimization(SAM)方法是一种可以提升模型泛化能力的算法,可以同时最小化损失函数和损失函数尖锐值。SAM 需要两次优化,第一次用于最大化尖锐值,即当在权重添加扰动后最大化损失差异。当模型到达尖锐区域时,权重扰动后对应的梯度能帮助模型跳出尖锐最小点。两次优化简单描述为:第一次获得权重扰动值,第二次更新模型权重。 

本文关注的问题是是否需要所有参数的扰动?关注到在大部分的深度学习模型中,只有 5% 的参数是尖锐的且优化过程中剧烈提升。 

本文提出一种基于稀疏扰动的 SAM 改进算法,Sparse SAM(SSAM)。本文方法需要获得一个二值化掩码决定哪一个参数需要扰动。本文提出两种获取二值化掩码的算法,即基于费雪信息(Fisher Information)的方法(SSAM-F)和基于动态稀疏训练的方法(SSAM-D)。

bfb74aaee94bd64ac1f219f36307e540.png

论文标题:

Make Sharpness-Aware Minimization Stronger: A Sparsified Perturbation Approach

论文链接:

https://openreview.net/pdf?id=88_wNI6ZBDZ

代码链接:

https://github.com/Mi-Peng/Sparse-Sharpness-Aware-Minimization

3a381fa77e015d679c6c1dc7af96f94d.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值