LoRA论文精读(上) Low-Rank Adaptation of Large Language Models

        本篇博客针对LoRA: Low-Rank Adaptation of Large Language Models的提出背景和算法原理做了非常清晰简明的讲解,适用于想要快速了解一下LoRA底层方法的学习者。对于原文的实验和未来工作等部分的详细介绍在LoRA论文精读(下) Low-Rank Adaptation of Large Language Models-CSDN博客中,如有兴趣,可以再进一步阅读。

1. 提出背景

        在NLP领域中,我们将大规模的预训练语言模型应用到下游任务主要需要通过微调(fine-tuning)来实现。而微调方法可以分为全参微调低参微调

        全参微调方法在每一次微调时都会更新预训练模型的所有参数。随着预训练语言模型的规模越来越大,参数越来越多,全参微调需要的计算和存储资源越来越大,成为了一大挑战。

        在此背景下,涌现了一些低参微调方法,主要是通过固定大部分参数,调整少量与模型任务相关的参数来提高模型表现效果。LoRA即为低参微调方法之一,它由微软团队在2021年提出,主要通过低秩适应(Low-Rank Adaptation)来实现,在和其他微调方法的baseline享有comparable的性能表现下大大对降低了计算等硬件资源的需求。       

2. 算法原理

        LoRA的主要算法原理就汇聚在下面这幅图中,下面我们对这幅图做具体介绍。

        X为输入变量,长度为d,h为输出变量,长度也为d,图中左边的d*d维的矩阵是预训练权重矩阵,可以反映涵盖整个映射过程,全参微调则是对这d*d个参数全部进行更新。而LoRA方法则是对矩阵进行分解,根据之前的研究知道W在更新时只有一个低秩矩阵在发生变化,我们把这个在发生变化的部分ΔW分解为B*A,B初始为零矩阵,而A初始为一个随机正态分布的矩阵。这个过程用公式表示如下:

                                                h=W_{0}x+\bigtriangleup Wx=W_{0}x+BAx

        A是一个d*r维的矩阵,B是一个r*d维的矩阵,我们会使得r<<d。BAx表示先把1*d维的向量x通过A映射到1*r维再通过B映射回1*d维代表x的变化量,再加上原本的预训练的权重矩阵W0*x,得到最终的输出变量h。这样做大大减少了参数数量,从原来的d*d变成了2*r*d,从而降低了计算门槛。

        那为什么要这么对A、B矩阵做初始化呢?原因如下:(1)B设置为0可以使训练初期,新增的部分对原始参数的影响为零,从而不会破坏预训练模型的初始性能(2)A初始正太分布可以在引入随机性的情况下进行有效传播,避免梯度消失或梯度爆炸(3)如果B和A全部初始化为零矩阵,很容易导致梯度消失;如果B和A全部正态分布初始化,那么在模型训练开始时,就容易得到一个过大的偏移值。

        LoRA的主要贡献在原文中总结如下:

(1)预训练模型可以共享并用于构建多个小型LoRA模块,以完成不同的任务。我们可以冻结共享模型,通过替换图中的矩阵A和B,高效地切换任务,从而大幅降低存储需求和任务切换开销。

(2)LoRA使用自适应优化器时,可以将训练效率提高3倍以上,从而降低硬件入门门槛。这是因为我们不需要计算大多数参数的梯度或维护优化器状态。相反,我们仅优化少量低秩矩阵。

(3)我们简单的线性设计允许在部署时将可训练矩阵与冻结的权重合并,从而在设计上实现了与完全微调模型相同的无推理延迟。

(4)LoRA可以与之前的许多方法结合使用,例如前缀微调等。


原文链接:[2106.09685] LoRA: Low-Rank Adaptation of Large Language Models        

         

<think>嗯,用户问的是在银行系统已经接入了DeepSeek模型的情况下,如何进一步用RAG和LoRA技术优化模型性能,并且要求接入部分的代码用Java写。首先,我需要确认自己对这两个技术的理解是否正确,然后再考虑如何在Java中实现。 首先,RAG是检索增强生成,结合了检索外部知识库和生成模型的能力。在银行场景中,可能需要实时查询金融产品信息、政策法规或者用户历史数据。所以,用户可能需要一个高效的检索系统,比如使用Elasticsearch或者向量数据库,然后结合生成模型来生成更准确的回答。 然后是LoRA,这是一种微调大模型的方法,通过低秩矩阵适应,可以在不改变原模型参数的情况下,用较小的参数量来调整模型行为。对于银行来说,可能需要在特定任务上微调模型,比如客服对话、风险评估等,同时保持模型原有的通用能力。 接下来,用户需要的是Java代码示例。不过,这里可能存在一些挑战,因为通常像LoRA这样的微调操作可能在Python中更常见,使用诸如Hugging Face的Transformers库。而Java在深度学习框架方面可能不如Python丰富,但仍有Deep Learning4J这样的库。不过,用户可能已经接入了DeepSeek模型,可能通过API或者某种服务的方式调用,所以实际代码可能需要结合REST API调用或者现有的Java库。 首先,关于RAG部分。在Java中,可能需要连接到一个检索系统,比如Elasticsearch,执行查询,获取相关文档,然后将这些文档作为上下文输入到DeepSeek模型中。这里需要处理检索、上下文拼接等步骤。代码示例可能包括使用Elasticsearch的Java客户端进行查询,然后构造包含上下文的请求体,发送到DeepSeek的API。 然后是LoRA部分。LoRA的实现通常涉及在模型训练时添加适配器层。如果在Java中进行微调,可能需要使用支持LoRA的库,但常见的实现可能更多在Python中。不过,用户可能已经有一个微调后的模型,通过API调用,所以在Java中可能只需要在调用模型时指定使用的LoRA适配器(比如传递一个适配器ID或名称参数)。或者,如果需要在客户端进行实时适配,这可能比较复杂,可能需要加载模型参数,这在Java中可能不太方便。所以可能的代码示例是调用已经部署好的带有LoRA适配器的模型服务,传递适配器参数。 不过,用户可能希望的是在现有系统中集成这两个技术,因此可能需要考虑如何在现有架构中添加检索步骤,以及如何调用带有LoRA适配器的模型。假设DeepSeek的API已经支持LoRA适配器,那么Java代码中可能需要添加相应的参数。 现在需要组织这些思路,给出结构化的回答,包括技术简介、优化场景、代码示例以及注意事项。需要注意代码示例可能需要简化,比如使用伪代码或假设的API调用方式,因为实际实现可能依赖具体的库或服务接口。 另外,用户可能是在银行的技术部门工作,需要确保代码的安全性和高效性,所以可能需要提到相关的最佳实践,比如缓存检索结果、微调时的数据隐私保护等。同时,可能要考虑性能问题,比如检索系统的响应时间,模型调用的延迟等。 总结一下,回答的结构应该是: 1. RAG和LoRA的简介及其在银行系统中的优化场景。 2. RAG的Java代码示例,包括检索部分和模型调用。 3. LoRA的Java代码示例,可能涉及调用带有适配器参数的模型API。 4. 注意事项,包括性能、安全、数据隐私等。 5. 结语,总结好处。 在编写代码示例时,可能需要假设使用某些库或框架,比如Elasticsearch的Java客户端,以及HTTP客户端发送请求到模型API。同时,需要确保代码示例简洁,符合Java的语法规范,并且适当添加注释。 最后,需要验证这些思路是否正确,是否有遗漏的关键点,比如RAG中上下文如何拼接,是否截断,如何处理检索失败的情况,或者LoRA适配器的具体调用方式等。可能需要进一步明确用户的具体需求,但根据问题描述,用户可能希望一个高层次的示例,所以保持代码示例的简洁和示范性是关键。</think>在银行系统中结合RAG与LoRA技术可显著提升AI模型的精准度和专业性。以下为技术简介及Java接入示例: --- ### **一、技术价值与场景** 1. **RAG(检索增强生成)** - **作用**:实时检索知识库补充上下文(如产品条款/风控规则) - **银行场景**:客户咨询应答、合规审查、风险预警 2. **LoRA(低秩适配微调)** - **作用**:低成本微调模型适配专业任务(参数更新量<1%) - **银行场景**:信贷报告生成、交易数据分析、个性化推荐 --- ### **二、Java代码实现示例** #### **1. RAG模块实现** ```java // 伪代码需替换实际SDK调用 public class RagService { // 检索知识库(示例:Elasticsearch) public List<Document> retrieveRelevantDocs(String query) { RestClient client = RestClient.builder( new HttpHost("es-host", 9200, "http")).build(); Request request = new Request("GET", "/knowledge_base/_search"); request.setJsonEntity("{ \"query\": { \"match\": { \"content\": \"" + query + "\" } } }"); Response response = client.performRequest(request); return parseDocuments(response.getEntity().getContent()); } // 拼接上下文调用DeepSeek public String generateWithRAG(String userQuery) { List<Document> docs = retrieveRelevantDocs(userQuery); String context = docs.stream().map(Document::getText).collect(Collectors.joining("\n")); String prompt = "基于以下信息回答问题:\n" + context + "\n\n问题:" + userQuery; return DeepSeekClient.generate(prompt); // 假设已有模型调用封装 } } ``` #### **2. LoRA适配调用** ```java // 假设模型服务支持LoRA适配器切换 public class LoraAdapterService { public String generateWithLora(String input, String adapterId) { JsonObject requestBody = new JsonObject(); requestBody.addProperty("input", input); requestBody.addProperty("adapter_id", adapterId); // 指定业务适配器(如loan_risk_v1) HttpResponse response = Unirest.post("https://api.deepseek.com/v1/generate")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值