PAC学习模型

术语

Examples: 示例或实例。
Features: 与示例关联的属性集,通常表示为向量。
Labels: 分配给示例的值或类别。
Hypothesis set: 一组将特征向量映射到标签集 Y Y Y 的函数。
Training sample: 训练学习算法的示例。
Validation sample: 优化算法参数的示例。
Test sample: 评估算法性能的示例。
X X X: 所有可能的示例的集合。
Y Y Y: 所有可能的标签的集合,简化为 Y = { 0 , 1 } Y = \left\{0, 1\right\} Y={01}
Concept class: 概念类,简记为 C C C, C = { c ∣ c : X → Y } C=\left\{c | c: X → Y \right\} C={cc:XY}
i . i . d i.i.d i.i.d:independent and identitical sampling, 独立同分布抽样。

概念是目标:concept是真实世界中的规则,是目标函数,通常不可见;
假设是逼近:hypothesis是模型得出的关于concept的猜测。假设越接近概念,模型的表现就越好。

定义:泛化误差

泛化误差定义

定义:经验误差

经验误差定义

经验误差是在样本上的平均误差;
泛化误差是基于分布的预期误差。

注意到,对固定的 h ∈ H,基于 i . i . d i.i.d i.i.d 样本 S S S 的经验误差的期望等于泛化误差,即:
经验误差的期望

定义:PAC学习

PAC学习的定义
高概率:概率大于 1 − δ 1-\delta 1δ
近似正确:泛化误差小于 ϵ \epsilon ϵ

例子:Learning axis-aligned(轴对齐)rectangles

an axis-aligned rectangle has its sides parallel to the x and y axes.
X = R 2 , Y = { 0 , 1 } X = \mathbb{R}^2, Y=\left\{0,1\right\} X=R2,Y={0,1}, C C C 是位于 R 2 \mathbb{R}^2 R2 中的所有轴对齐矩形的集合,每个概念 c c c 都是特定轴对齐矩形内的点集。学习问题为:用标记的训练样本以小误差确定目标轴对齐的矩形。断言,轴对齐矩形的概念类是 PAC 可学习的。
在这里插入图片描述
图 2.1 说明了这个问题。 R R R 表示目标轴对齐的矩形, R ′ R' R 是一个假设。从图中可以看出, R ′ R' R 的误差区域是:在 R R R 内但在 R ′ R' R 外的区域,以及在 R ′ R' R 外但在 R R R 内的区域。第一个区域称为假阴性,即被 R ′ R' R 标记为 0 的点,这些点实际上是 1。第二个区域称为假阳性,即由 R ′ R' R 标记为 1 的点,实际上是 0。
算法返回的假设
为了证明概念类是 PAC 可学习的,首先定义一个简单的 PAC 算法 A \mathcal{A} A。给定一个标记的样本 S S S,该算法会返回最紧密的轴对齐矩形 R ′ = R S R'= R_S R=RS。图 2.2 说明了算法返回的假设。根据定义, R S R_S RS 不会产生任何误报,因为它的点必须包含在目标概念 R R R 中。因此, R S R_S RS 的误差区域包含在 R R R 中。

R ∈ C R \in C RC 成为目标概念。固定 ϵ > 0 \epsilon > 0 ϵ>0。用 P r [ R S ] Pr[R_S] Pr[RS] 表示依据分布 D D D 随机绘制的点落在 R S R_S RS 内的概率,假设 P r [ R S ] > ϵ Pr[R_S] >\epsilon Pr[RS]>ϵ
在这里插入图片描述

由于 P r [ R S ] > ϵ Pr[R_S] >\epsilon Pr[RS]>ϵ,我们可以沿 R S R_S RS 的边定义四个矩形区域 r 1 , r 2 , r 3 r_1,r_2,r_3 r1,r2,r3 r 4 r_4 r4,每个区域的概率至少为 ϵ / 4 \epsilon/4 ϵ/4。图 2.3 说明了这些区域的定义。

注意到如果 R S R_S RS 和这四个区域都相交,则它的误差区域,即它没有覆盖的 R R R 部分的概率质量不能大于 ϵ \epsilon ϵ 。因此 P r [ R S ] > ϵ Pr[R_S] >\epsilon Pr[RS]>ϵ 说明 P r [ R S ] Pr[R_S] Pr[RS] 和至少其中一个区域不交。

因此有:
在这里插入图片描述
进而可以得到:
在这里插入图片描述所以,对于任何 ϵ > 0 \epsilon>0 ϵ>0 δ > 0 \delta>0 δ>0 ,如果样本量 m ≥ 4 ϵ l o g 4 δ m \ge \frac{4}{\epsilon}log \frac{4}{\delta} mϵ4logδ4 ,则 P r S ∼ D m [ R ( R S ) > ϵ ] ≤ 1 − δ Pr_{S \sim D^m}[R(R_S) > \epsilon] ≤ 1 − δ PrSDm[R(RS)>ϵ]1δ

此外,在二维空间 ( R 2 \mathbb{R}² R2 ) 中表示点和轴对齐矩形的计算成本是常数,这些矩形可以通过它们的四个顶点来确定。这证明了轴对齐矩形的概念类是 PAC 可学习的,并且 PAC 学习轴对齐矩形的样本复杂度是 O ( 1 ϵ l o g 1 δ ) O(\frac{1}{\epsilon}log \frac{1}{\delta}) O(ϵ1logδ1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值