神经网络超参数调参

本文探讨了神经网络性能受超参数影响,介绍了手动调参的局限性,重点讲述了自动调参中的网格搜索、随机搜索和贝叶斯优化方法,以及如何利用贝叶斯优化进行高效且性能良好的超参数优化,同时提及其他优化算法作为扩展选项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

神经网络的性能受超参数,如学习率、隐含层层数以及大小等的影响非常大,所以在实际应用中,我们往往需要寻找一组最优的超参数组合,尽可能保证神经网络的泛化性能。超参数调参主要分为手动调参和自动调参两种方式。

一、手动调参

手动调参即调参人员进行人工手动调参,对调参人员的知识、经验要求较高,过程繁琐且耗时。神经网络超参数较多且各参数之间相关影响,故该方法不实用。若欲学习调参以及超参数是如何影响网络权重的,那该方法具有一定的意义。

二、自动调参

自动调参即通过算法对超参数进行自动化调参,主要有网格搜索、随机搜索、贝叶斯优化以及其他算法。

(一)网格搜索

遍历所有可能的超参数组合,但依据现有算力,这是不现实的。故一般是事先限定若干可能,再遍历进行调参,性能较优,但搜索仍然不高效。

from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier

#准备数据
x,y=load_iris()["data"],load_iris()["target"]
#网格搜索
best_score=0
best_param=dict()
for n_estimators in range(10,250,100):
    for min_samples_splt in range(2,25,10):
        for max_depth in range(5,15,5):
            for max_features in range(1,10):
                model=RandomForestClassifier(n_estimators=int(n_est
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吃冰442

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值