油井检测检测系统源码分享
[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]
1.研究背景与意义
项目参考AAAI Association for the Advancement of Artificial Intelligence
项目来源AACV Association for the Advancement of Computer Vision
研究背景与意义
随着全球能源需求的不断增长,石油作为重要的能源资源,其开采和管理变得愈发重要。油井的检测与监控不仅关系到油田的生产效率,还直接影响到环境保护和资源的可持续利用。传统的油井检测方法往往依赖人工巡检,效率低下且容易受到人为因素的影响,无法满足现代化油田管理的需求。因此,基于计算机视觉和深度学习技术的自动化油井检测系统应运而生,成为提升油田管理效率的重要手段。
近年来,YOLO(You Only Look Once)系列目标检测算法因其高效性和实时性而受到广泛关注。YOLOv8作为该系列的最新版本,进一步提升了检测精度和速度,适用于各种复杂场景的目标检测任务。然而,针对油井检测这一特定应用场景,YOLOv8仍然面临着一些挑战,如数据集的稀缺性、油井图像的多样性及环境因素的影响等。因此,改进YOLOv8以适应油井检测的需求,不仅具有重要的学术价值,也为实际应用提供了新的解决方案。
本研究的核心在于基于改进YOLOv8的油井检测系统,利用一个包含3500张油井图像的数据集进行训练和测试。该数据集专注于油井这一特定类别,涵盖了不同的拍摄角度、光照条件和背景环境,旨在提高模型对油井目标的识别能力。通过对YOLOv8的改进,我们希望能够增强其在油井检测中的表现,特别是在小目标检测和复杂背景下的鲁棒性。
本研究的意义不仅在于技术上的创新,更在于其对油田管理实践的推动。通过实现高效、准确的油井检测系统,可以大幅度降低人工巡检的成本,提高油田的管理效率。此外,自动化的检测系统能够实时监控油井的状态,及时发现潜在的安全隐患,从而减少环境污染和资源浪费,促进可持续发展。
在理论层面,本研究将为目标检测领域提供新的思路和方法,特别是在特定领域应用中的模型改进与优化方面。通过对YOLOv8的改进,我们将探索深度学习模型在特定任务中的适应性与灵活性,为后续研究提供参考。
综上所述,基于改进YOLOv8的油井检测系统的研究,不仅具有重要的学术价值和应用前景,还将为石油行业的数字化转型和智能化管理提供有力支持。通过提升油井检测的自动化水平,我们期待能够为油田的可持续发展贡献一份力量。
2.图片演示
![### 5.全套项目环境部署视频教程(零基础手把手教学)
5.2 安装Python虚拟环境创建和依赖库安装视频教程链接(零基础手把手教学)
6.手把手YOLOV8训练视频教程(零基础小白有手就能学会)
6.1 手把手YOLOV8训练视频教程(零基础小白有手就能学会)
7.70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)
7.1 70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)
8.70+种全套YOLOV8创新点原理讲解(非科班也可以轻松写刊发刊,V10版本正在科研待更新)
由于篇幅限制,每个创新点的具体原理讲解就不一一展开,具体见下列网址中的创新点对应子项目的技术原理博客网址【Blog】:
9.系统功能展示(检测对象为举例,实际内容以本项目数据集为准)
图9.1.系统支持检测结果表格显示
图9.2.系统支持置信度和IOU阈值手动调节
图9.3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)
图9.4.系统支持摄像头实时识别
图9.5.系统支持图片识别
图9.6.系统支持视频识别
图9.7.系统支持识别结果文件自动保存
图9.8.系统支持Excel导出检测结果数据
10.原始YOLOV8算法原理
原始YOLOv8算法原理
YOLOv8算法是由Ultralytics公司于2023年发布的YOLO系列最新版本,作为YOLO系列的继承者,YOLOv8在多个方面进行了创新和改进,旨在提升目标检测的效率和准确性。YOLOv8的设计理念依然遵循了YOLO系列的核心思想,即实时性和高效性,然而在实现上却引入了许多新的技术和结构,以适应日益复杂的计算机视觉任务。
首先,YOLOv8在数据预处理方面延续了YOLOv5的策略,采用了多种数据增强技术,包括马赛克增强、混合增强、空间扰动和颜色扰动等。这些增强手段不仅提高了模型的鲁棒性,还能有效扩展训练数据集的多样性,使得模型在面对不同场景和光照条件时,依然能够保持较高的检测性能。
在骨干网络结构方面,YOLOv8的设计借鉴了YOLOv5的主干网络架构,整体结构清晰且具有良好的可扩展性。YOLOv8将原有的C3模块替换为新的C2f模块,这一改进显著增强了特征提取的能力。C2f模块通过引入更多的分支结构,丰富了梯度回传时的支流,使得网络在学习过程中能够更好地捕捉到不同层次的特征信息。这种设计不仅提高了特征提取的效率,还增强了模型的表达能力。
YOLOv8还采用了FPN-PAN结构来构建特征金字塔,这一结构使得多尺度信息之间的融合更加充分。尽管FPN-PAN的基本框架与YOLOv5相似,但YOLOv8在其中的C3模块被C2f模块所替代,进一步提升了特征融合的效果。这种结构的优势在于,它能够有效地处理不同尺度的目标,使得模型在面对各种大小的物体时,依然能够保持较高的检测精度。
在检测头的设计上,YOLOv8采用了解耦头结构,这一结构的引入使得分类和定位任务可以在不同的分支中独立进行,从而提高了模型的灵活性和准确性。与传统的耦合头相比,解耦头能够更好地处理复杂的目标检测任务,尤其是在目标密集的场景中,解耦头的优势愈加明显。此外,YOLOv8采用了Anchor-Free的检测方式,进一步简化了模型的设计,减少了对预定义锚框的依赖,使得模型在处理不同形状和大小的目标时,能够更加自适应。
在标签分配策略方面,YOLOv8引入了动态标签分配策略,取代了YOLOv5中依赖于数据集的候选框聚类方法。这一策略通过使用目标框和目标分数来进行标签分配,避免了因数据集不足而导致的标签不准确问题。YOLOv8的损失函数设计也有所创新,采用了Varifocal Loss作为分类损失,并结合CIoU Loss与DFL Loss作为回归损失。这种损失函数的设计旨在更好地平衡正负样本的贡献,尤其是在处理高质量正样本时,能够有效提升模型的性能。
总的来说,YOLOv8算法在多个方面进行了创新和改进,尤其是在网络结构、数据处理和损失函数等方面的优化,使得其在目标检测任务中表现出色。通过引入C2f模块、解耦头结构和动态标签分配策略,YOLOv8不仅提升了模型的准确性和鲁棒性,还增强了其在实时检测中的应用潜力。这些改进使得YOLOv8在计算机视觉领域的目标检测任务中,成为了一个值得关注的重要进展。随着YOLOv8的推出,目标检测技术将迎来新的发展机遇,为各类应用场景提供更加高效和精准的解决方案。
11.项目核心源码讲解(再也不用担心看不懂代码逻辑)
11.1 ui.py
以下是经过简化和注释的核心代码部分:
import sys
import subprocess
def run_script(script_path):
"""
使用当前 Python 环境运行指定的脚本。
Args:
script_path (str): 要运行的脚本路径
"""
# 获取当前 Python 解释器的路径
python_path = sys.executable
# 构建运行命令,使用 streamlit 运行指定的脚本
command = f'"{python_path}" -m streamlit run "{script_path}"'
# 执行命令并等待其完成
result = subprocess.run(command, shell=True)
# 检查命令执行结果,如果返回码不为0,则表示出错
if result.returncode != 0:
print("脚本运行出错。")
# 主程序入口
if __name__ == "__main__":
# 指定要运行的脚本路径
script_path = "web.py" # 这里可以直接指定脚本名称
# 调用函数运行脚本
run_script(script_path)
代码注释说明:
-
导入模块:
sys
:用于获取当前 Python 解释器的路径。subprocess
:用于执行外部命令。
-
run_script
函数:- 该函数接受一个脚本路径作为参数,并使用当前 Python 环境运行该脚本。
- 使用
sys.executable
获取当前 Python 解释器的路径,以确保脚本在正确的环境中运行。 - 构建命令字符串,使用
streamlit
模块运行指定的脚本。 - 使用
subprocess.run
执行命令,并等待其完成。 - 检查命令的返回码,如果不为0,表示脚本运行出错,并打印错误信息。
-
主程序入口:
- 使用
if __name__ == "__main__":
确保该代码块仅在直接运行脚本时执行。 - 指定要运行的脚本路径(在这里直接指定为
"web.py"
)。 - 调用
run_script
函数以运行指定的脚本。
- 使用
这个文件是一个名为 ui.py
的 Python 脚本,主要功能是通过当前的 Python 环境来运行一个指定的脚本。首先,文件导入了几个必要的模块,包括 sys
、os
和 subprocess
,这些模块提供了与系统交互和执行外部命令的功能。此外,还导入了 abs_path
函数,该函数来自 QtFusion.path
模块,用于获取文件的绝对路径。
在 ui.py
中,定义了一个名为 run_script
的函数,该函数接受一个参数 script_path
,表示要运行的脚本的路径。函数内部首先获取当前 Python 解释器的路径,接着构建一个命令字符串,这个命令使用 streamlit
模块来运行指定的脚本。streamlit
是一个用于构建数据应用的库。
随后,使用 subprocess.run
方法执行构建好的命令。如果命令执行的返回码不为零,表示脚本运行过程中出现了错误,程序会打印出“脚本运行出错”的提示信息。
在文件的最后部分,使用 if __name__ == "__main__":
语句来确保当脚本作为主程序运行时,下面的代码才会被执行。在这里,指定了要运行的脚本路径为 web.py
,并调用 run_script
函数来执行这个脚本。
总的来说,这个 ui.py
文件的主要作用是提供一个简单的接口,通过命令行来运行一个 Streamlit 应用脚本 web.py
,并处理可能出现的错误。
11.2 code\ultralytics\data\explorer_init_.py
以下是保留的核心代码部分,并附上详细的中文注释:
# 导入必要的工具函数
from .utils import plot_query_result
# 定义模块的公开接口,允许外部访问的内容
__all__ = ["plot_query_result"]
代码注释说明:
-
from .utils import plot_query_result
:- 这一行代码从当前包的
utils
模块中导入了plot_query_result
函数。这里的.
表示当前目录,意味着utils
是与当前模块同级的一个模块。 plot_query_result
可能是一个用于绘制查询结果的函数,具体功能需要查看utils
模块的实现。
- 这一行代码从当前包的
-
__all__ = ["plot_query_result"]
:- 这一行定义了模块的
__all__
变量,它是一个列表,指定了当使用from module import *
语句时,哪些名称是可以被导入的。 - 在这里,只有
plot_query_result
被列入__all__
,这意味着其他未列出的名称将不会被导入,帮助控制模块的公共接口,避免不必要的名称暴露。
- 这一行定义了模块的
这个程序文件是一个Python模块,属于Ultralytics YOLO项目的一部分,遵循AGPL-3.0许可证。文件的主要功能是导入和暴露一个名为plot_query_result
的函数,来自同一目录下的utils
模块。
在文件的开头,有一个注释行,标明了该项目的名称“Ultralytics YOLO”以及所使用的许可证类型。这种注释通常用于提供项目的基本信息,便于其他开发者了解该代码的来源和使用条款。
接下来,文件通过from .utils import plot_query_result
语句导入了utils
模块中的plot_query_result
函数。这里的.
表示当前目录,表明utils
模块与当前文件在同一层级。
最后,__all__
变量被定义为一个列表,包含了plot_query_result
。这个变量的作用是指明当使用from module import *
语句时,哪些名称是可以被导入的。这是一种控制模块导出接口的方式,帮助其他开发者清楚地知道哪些功能是模块的公共接口。
总体而言,这个文件的结构简单明了,主要是为了组织和管理代码,使得plot_query_result
函数可以被其他模块方便地使用。
11.3 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\autobackend.py
以下是经过简化并注释的核心代码部分,主要集中在 AutoBackend
类的初始化和推理过程:
import torch
import torch.nn as nn
import cv2
import numpy as np
from pathlib import Path
from ultralytics.utils import LOGGER, yaml_load
from ultralytics.utils.downloads import attempt_download_asset
class AutoBackend(nn.Module):
"""
处理 Ultralytics YOLO 模型的动态后端选择。
"""
@torch.no_grad()
def __init__(self, weights='yolov8n.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True, verbose=True):
"""
初始化 AutoBackend 进行推理。
参数:
weights (str): 模型权重文件的路径,默认为 'yolov8n.pt'。
device (torch.device): 运行模型的设备,默认为 CPU。
dnn (bool): 是否使用 OpenCV DNN 模块进行 ONNX 推理,默认为 False。
data (str | Path | optional): 包含类名的额外 data.yaml 文件的路径,默认为 None。
fp16 (bool): 是否启用半精度推理,默认为 False。
fuse (bool): 是否融合 Conv2D + BatchNorm 层以优化,默认为 True。
verbose (bool): 是否启用详细日志,默认为 True。
"""
super().__init__()
w = str(weights[0] if isinstance(weights, list) else weights) # 处理权重路径
model_type = self._model_type(w) # 确定模型类型
self.fp16 = fp16 # 半精度标志
self.device = device # 设备设置
# 下载模型权重(如果不是本地文件)
if not model_type[0]: # 如果不是 PyTorch 模型
w = attempt_download_asset(w)
# 加载模型
if model_type[0]: # 如果是 PyTorch 模型
from ultralytics.nn.tasks import attempt_load_weights
self.model = attempt_load_weights(w, device=device, inplace=True, fuse=fuse)
elif model_type[1]: # TorchScript
self.model = torch.jit.load(w, map_location=device)
elif dnn: # ONNX OpenCV DNN
self.net = cv2.dnn.readNetFromONNX(w)
elif model_type[2]: # ONNX Runtime
import onnxruntime
self.session = onnxruntime.InferenceSession(w)
# 其他模型类型的加载省略...
# 加载外部元数据 YAML
metadata = self._load_metadata(weights)
self.names = self._check_class_names(metadata.get('names', data))
def forward(self, im, augment=False, visualize=False):
"""
对 YOLOv8 MultiBackend 模型进行推理。
参数:
im (torch.Tensor): 要进行推理的图像张量。
augment (bool): 是否在推理过程中进行数据增强,默认为 False。
visualize (bool): 是否可视化输出预测,默认为 False。
返回:
(tuple): 包含原始输出张量和处理后的输出(如果 visualize=True)。
"""
if self.fp16 and im.dtype != torch.float16:
im = im.half() # 转换为 FP16
# 根据模型类型进行推理
if self.model: # PyTorch
y = self.model(im, augment=augment, visualize=visualize)
elif self.dnn: # ONNX OpenCV DNN
im = im.cpu().numpy() # 转换为 numpy
self.net.setInput(im)
y = self.net.forward()
elif self.session: # ONNX Runtime
im = im.cpu().numpy() # 转换为 numpy
y = self.session.run(None, {self.session.get_inputs()[0].name: im})
# 其他推理方式省略...
return y # 返回推理结果
@staticmethod
def _model_type(p='path/to/model.pt'):
"""
根据模型文件路径返回模型类型。
参数:
p: 模型文件的路径,默认为 'path/to/model.pt'。
"""
# 省略具体实现...
return model_types # 返回模型类型列表
def _load_metadata(self, weights):
"""
加载模型的元数据。
参数:
weights: 模型权重路径。
返回:
metadata: 加载的元数据。
"""
# 省略具体实现...
return metadata
def _check_class_names(self, names):
"""
检查类名的有效性。
参数:
names: 类名列表或字典。
返回:
names: 处理后的类名字典。
"""
# 省略具体实现...
return names
代码说明:
- 类定义:
AutoBackend
类用于处理不同模型格式的推理。 - 初始化方法:在
__init__
方法中,模型权重会被加载,并根据不同的模型类型(如 PyTorch、ONNX 等)进行初始化。 - 推理方法:
forward
方法用于执行推理,根据输入的图像张量和模型类型返回推理结果。 - 辅助方法:包括
_model_type
用于确定模型类型,_load_metadata
用于加载模型的元数据,以及_check_class_names
用于验证类名的有效性。
通过这种方式,代码的核心逻辑得以保留,同时也提供了详细的中文注释以帮助理解。
这个程序文件是Ultralytics YOLOv8模型的一个核心部分,主要负责动态选择后端以进行推理。文件中包含了多个导入的库和模块,提供了必要的功能支持,如图像处理、模型加载和推理等。
首先,文件中定义了一个check_class_names
函数,用于检查和处理类名。该函数可以将类名从列表转换为字典,并确保类名的索引在有效范围内。如果类名以特定格式(如ImageNet类代码)给出,它还会将其映射为可读的名称。
接下来,定义了AutoBackend
类,该类继承自nn.Module
,用于处理不同格式模型的推理。该类支持多种模型格式,包括PyTorch、ONNX、TensorRT等,并提供动态切换后端的能力,以便在不同平台上部署模型。
在__init__
方法中,类初始化了模型的权重、设备、数据类型等参数。根据传入的模型文件路径,判断模型的类型并加载相应的模型。对于不同的模型格式,使用不同的加载方式,例如使用torch.jit.load
加载TorchScript模型,使用cv2.dnn.readNetFromONNX
加载ONNX模型等。
此外,forward
方法实现了模型的推理过程。该方法接收输入图像,并根据模型类型执行推理,返回输出结果。对于不同的后端,输入图像会被转换为相应的格式,例如将PyTorch张量转换为NumPy数组,或直接使用TensorFlow的接口进行推理。
warmup
方法用于预热模型,通过运行一次前向传播来提高后续推理的效率。_apply_default_class_names
和_model_type
是静态方法,分别用于处理默认类名和确定模型类型。
总的来说,这个文件的主要功能是为YOLOv8模型提供一个灵活的推理接口,支持多种模型格式,并能根据输入的模型文件动态选择合适的后端进行推理。这种设计使得用户可以方便地在不同的环境中使用YOLOv8模型,提升了模型的可用性和适应性。
11.4 code\ultralytics\models\nas\model.py
以下是经过简化并注释的YOLO-NAS模型接口代码的核心部分:
from pathlib import Path
import torch
from ultralytics.engine.model import Model
from ultralytics.utils.torch_utils import model_info, smart_inference_mode
from .predict import NASPredictor
from .val import NASValidator
class NAS(Model):
"""
YOLO NAS模型用于目标检测。
该类提供了YOLO-NAS模型的接口,并扩展了Ultralytics引擎中的`Model`类。
旨在通过预训练或自定义训练的YOLO-NAS模型来简化目标检测任务。
"""
def __init__(self, model="yolo_nas_s.pt") -> None:
"""初始化NAS模型,使用提供的模型或默认的'yolo_nas_s.pt'模型。"""
# 确保提供的模型不是YAML配置文件
assert Path(model).suffix not in (".yaml", ".yml"), "YOLO-NAS模型仅支持预训练模型。"
# 调用父类构造函数
super().__init__(model, task="detect")
@smart_inference_mode()
def _load(self, weights: str, task: str):
"""加载现有的NAS模型权重,或在未提供权重时创建新的NAS模型。"""
import super_gradients
suffix = Path(weights).suffix
# 根据权重文件后缀加载模型
if suffix == ".pt":
self.model = torch.load(weights) # 加载.pt文件
elif suffix == "":
self.model = super_gradients.training.models.get(weights, pretrained_weights="coco") # 获取预训练模型
# 标准化模型属性
self.model.fuse = lambda verbose=True: self.model # 融合模型
self.model.stride = torch.tensor([32]) # 设置步幅
self.model.names = dict(enumerate(self.model._class_names)) # 类别名称映射
self.model.is_fused = lambda: False # 用于信息获取
self.model.yaml = {} # 用于信息获取
self.model.pt_path = weights # 导出时的权重路径
self.model.task = "detect" # 导出时的任务类型
def info(self, detailed=False, verbose=True):
"""
记录模型信息。
参数:
detailed (bool): 是否显示详细信息。
verbose (bool): 控制输出的详细程度。
"""
return model_info(self.model, detailed=detailed, verbose=verbose, imgsz=640)
@property
def task_map(self):
"""返回任务与相应预测器和验证器类的映射字典。"""
return {"detect": {"predictor": NASPredictor, "validator": NASValidator}}
代码核心部分说明:
- 类定义:
NAS
类继承自Model
类,专门用于YOLO-NAS模型的目标检测。 - 初始化方法:在初始化时检查模型文件的类型,确保只接受预训练模型文件(
.pt
),并调用父类的初始化方法。 - 加载模型:
_load
方法根据权重文件的后缀加载模型,支持从.pt
文件或通过名称获取预训练模型。还会标准化模型的一些属性以适应后续的使用。 - 模型信息:
info
方法用于记录和返回模型的相关信息,可以选择详细程度和输出的详细性。 - 任务映射:
task_map
属性返回一个字典,映射任务到相应的预测器和验证器类,便于扩展和管理不同的任务。
这个程序文件定义了一个名为 NAS
的类,属于 Ultralytics YOLO(You Only Look Once)系列的模型接口,专门用于目标检测任务。文件的开头部分提供了一个简单的示例,展示了如何使用这个类来加载模型并进行预测。
在文件中,首先导入了一些必要的库和模块,包括 Path
(用于处理文件路径)、torch
(PyTorch库)以及 Ultralytics 引擎中的 Model
类和一些工具函数。接着,定义了 NAS
类,该类继承自 Model
类,目的是扩展 Ultralytics 引擎的功能,以便于使用预训练或自定义训练的 YOLO-NAS 模型进行目标检测。
NAS
类的构造函数 __init__
接受一个参数 model
,默认值为 'yolo_nas_s.pt'
,用于指定要加载的预训练模型的路径。构造函数中有一个断言,确保传入的模型路径后缀不是 YAML 格式,因为 YOLO-NAS 模型只支持预训练模型,而不支持配置文件。
_load
方法用于加载模型权重。如果传入的权重文件是 .pt
格式,则使用 torch.load
加载模型;如果没有后缀,则通过 super_gradients
库获取预训练模型。此方法还对模型进行了一些标准化处理,包括设置模型的步幅、类别名称等属性。
info
方法用于记录和返回模型的信息,可以选择是否显示详细信息和控制输出的冗长程度。
最后,task_map
属性返回一个字典,将任务映射到相应的预测器和验证器类,这里映射的是目标检测任务对应的 NASPredictor
和 NASValidator
类。
整体来看,这个文件为 YOLO-NAS 模型提供了一个清晰的接口,使得用户能够方便地加载模型并进行目标检测,同时也确保了模型的标准化和信息的可获取性。
11.5 train.py
以下是代码中最核心的部分,并附上详细的中文注释:
class DetectionTrainer(BaseTrainer):
"""
DetectionTrainer类,继承自BaseTrainer类,用于基于检测模型的训练。
"""
def build_dataset(self, img_path, mode="train", batch=None):
"""
构建YOLO数据集。
参数:
img_path (str): 包含图像的文件夹路径。
mode (str): 模式,`train`表示训练模式,`val`表示验证模式,用户可以为每种模式自定义不同的增强。
batch (int, optional): 批次大小,仅用于`rect`模式。默认为None。
"""
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32) # 获取模型的最大步幅
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
"""构造并返回数据加载器。"""
assert mode in ["train", "val"] # 确保模式为训练或验证
with torch_distributed_zero_first(rank): # 在分布式训练中,确保数据集只初始化一次
dataset = self.build_dataset(dataset_path, mode, batch_size) # 构建数据集
shuffle = mode == "train" # 训练模式下打乱数据
if getattr(dataset, "rect", False) and shuffle:
LOGGER.warning("WARNING ⚠️ 'rect=True'与DataLoader的shuffle不兼容,设置shuffle=False")
shuffle = False # 如果使用rect模式,则不打乱数据
workers = self.args.workers if mode == "train" else self.args.workers * 2 # 设置工作线程数
return build_dataloader(dataset, batch_size, workers, shuffle, rank) # 返回数据加载器
def preprocess_batch(self, batch):
"""对一批图像进行预处理,包括缩放和转换为浮点数。"""
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255 # 将图像转换为浮点数并归一化
if self.args.multi_scale: # 如果启用多尺度训练
imgs = batch["img"]
sz = (
random.randrange(self.args.imgsz * 0.5, self.args.imgsz * 1.5 + self.stride)
// self.stride
* self.stride
) # 随机选择一个新的尺寸
sf = sz / max(imgs.shape[2:]) # 计算缩放因子
if sf != 1:
ns = [
math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:]
] # 计算新的形状
imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False) # 进行插值
batch["img"] = imgs # 更新图像
return batch
def set_model_attributes(self):
"""设置模型的属性,包括类别数量和名称。"""
self.model.nc = self.data["nc"] # 将类别数量附加到模型
self.model.names = self.data["names"] # 将类别名称附加到模型
self.model.args = self.args # 将超参数附加到模型
def get_model(self, cfg=None, weights=None, verbose=True):
"""返回一个YOLO检测模型。"""
model = DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1) # 创建检测模型
if weights:
model.load(weights) # 加载权重
return model
def get_validator(self):
"""返回用于YOLO模型验证的DetectionValidator。"""
self.loss_names = "box_loss", "cls_loss", "dfl_loss" # 定义损失名称
return yolo.detect.DetectionValidator(
self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
)
def plot_training_samples(self, batch, ni):
"""绘制带有注释的训练样本。"""
plot_images(
images=batch["img"],
batch_idx=batch["batch_idx"],
cls=batch["cls"].squeeze(-1),
bboxes=batch["bboxes"],
paths=batch["im_file"],
fname=self.save_dir / f"train_batch{ni}.jpg",
on_plot=self.on_plot,
)
def plot_metrics(self):
"""从CSV文件中绘制指标。"""
plot_results(file=self.csv, on_plot=self.on_plot) # 保存结果图
代码说明:
- DetectionTrainer类:这是一个用于训练YOLO检测模型的类,继承自BaseTrainer类。
- build_dataset方法:构建YOLO数据集,接受图像路径、模式和批次大小作为参数。
- get_dataloader方法:构造数据加载器,确保在分布式训练中只初始化一次数据集。
- preprocess_batch方法:对图像批次进行预处理,包括归一化和多尺度处理。
- set_model_attributes方法:设置模型的类别数量和名称。
- get_model方法:返回一个YOLO检测模型,可以选择加载预训练权重。
- get_validator方法:返回用于验证模型的检测验证器。
- plot_training_samples方法:绘制训练样本及其注释。
- plot_metrics方法:从CSV文件中绘制训练指标。
这个程序文件 train.py
是一个用于训练 YOLO(You Only Look Once)目标检测模型的脚本,继承自 BaseTrainer
类。文件中包含了多个方法,主要用于构建数据集、获取数据加载器、预处理图像、设置模型属性、获取模型、验证模型、记录损失、输出训练进度、绘制训练样本和绘制训练指标等功能。
首先,DetectionTrainer
类的构造函数中定义了如何构建数据集。build_dataset
方法接收图像路径、模式(训练或验证)和批次大小,并利用 build_yolo_dataset
函数创建一个 YOLO 数据集。该方法还根据模型的步幅计算图像的最小尺寸。
接下来,get_dataloader
方法用于构建数据加载器。它会根据模式(训练或验证)来初始化数据集,并根据模式决定是否打乱数据。该方法还考虑了多进程的工作线程数量。
在数据预处理方面,preprocess_batch
方法对图像进行缩放和转换为浮点数,确保图像数据在训练时处于合适的范围内。它还支持多尺度训练,通过随机选择图像的大小来增强模型的鲁棒性。
set_model_attributes
方法用于设置模型的属性,包括类别数量和类别名称,以便模型能够正确识别不同的目标。
get_model
方法返回一个 YOLO 检测模型,并可以加载预训练的权重。get_validator
方法则返回一个用于验证模型的验证器。
在损失记录方面,label_loss_items
方法用于返回一个包含训练损失项的字典,方便在训练过程中进行监控。
此外,progress_string
方法返回一个格式化的字符串,显示训练进度,包括当前的 epoch、GPU 内存使用情况、损失值、实例数量和图像大小等信息。
为了可视化训练过程,plot_training_samples
方法绘制训练样本及其标注,plot_metrics
方法绘制从 CSV 文件中提取的指标,plot_training_labels
方法则创建一个带标签的训练图,展示训练数据的标注情况。
整体而言,这个文件提供了一个完整的框架,用于训练 YOLO 模型,支持数据集构建、数据加载、模型训练、损失监控和结果可视化等功能。
11.6 code\utils.py
以下是代码中最核心的部分,并附上详细的中文注释:
import os
import cv2
import pandas as pd
import streamlit as st
from PIL import Image
from QtFusion.path import abs_path
def save_uploaded_file(uploaded_file):
"""
保存上传的文件到服务器上。
Args:
uploaded_file (UploadedFile): 通过Streamlit上传的文件。
Returns:
str: 保存文件的完整路径,如果没有文件上传则返回 None。
"""
# 检查是否有文件上传
if uploaded_file is not None:
base_path = "tempDir" # 定义文件保存的基本路径
# 如果路径不存在,创建这个路径
if not os.path.exists(base_path):
os.makedirs(base_path)
# 获取文件的完整路径
file_path = os.path.join(base_path, uploaded_file.name)
# 以二进制写模式打开文件
with open(file_path, "wb") as f:
f.write(uploaded_file.getbuffer()) # 写入文件
return file_path # 返回文件路径
return None # 如果没有文件上传,返回 None
def concat_results(result, location, confidence, time):
"""
显示检测结果。
Args:
result (str): 检测结果。
location (str): 检测位置。
confidence (str): 置信度。
time (str): 检测用时。
Returns:
DataFrame: 包含检测结果的 DataFrame。
"""
# 创建一个包含这些信息的 DataFrame
result_data = {
"识别结果": [result],
"位置": [location],
"置信度": [confidence],
"用时": [time]
}
results_df = pd.DataFrame(result_data) # 将结果数据转换为 DataFrame
return results_df # 返回结果 DataFrame
def get_camera_names():
"""
获取可用摄像头名称列表。
Returns:
list: 返回包含“未启用摄像头”和可用摄像头索引号的列表。
"""
camera_names = ["摄像头检测关闭", "0"] # 初始化摄像头名称列表
max_test_cameras = 10 # 定义要测试的最大摄像头数量
# 循环检测摄像头
for i in range(max_test_cameras):
cap = cv2.VideoCapture(i, cv2.CAP_DSHOW) # 尝试打开摄像头
if cap.isOpened() and str(i) not in camera_names: # 如果摄像头打开成功且未在列表中
camera_names.append(str(i)) # 添加摄像头索引到列表
cap.release() # 释放摄像头资源
# 如果没有找到可用的摄像头,输出提示信息
if len(camera_names) == 1:
st.write("未找到可用的摄像头")
return camera_names # 返回摄像头名称列表
代码核心部分说明:
-
save_uploaded_file
函数:用于保存用户上传的文件到服务器的指定目录。检查上传的文件是否存在,如果存在则创建目录并保存文件,最后返回文件的完整路径。 -
concat_results
函数:用于将检测结果、位置、置信度和用时信息整理成一个 Pandas DataFrame,方便后续的数据处理和展示。 -
get_camera_names
函数:用于检测可用的摄像头,并返回一个包含摄像头索引的列表。如果没有找到可用的摄像头,则会给出提示。
这个程序文件 utils.py
包含了一些用于处理文件上传、显示检测结果、加载默认图片以及获取可用摄像头名称的实用函数。首先,文件通过导入必要的库来实现这些功能,包括操作系统相关的 os
、图像处理库 cv2
、数据处理库 pandas
、Web 应用框架 streamlit
、图像处理库 PIL
以及自定义路径处理的 abs_path
。
在 save_uploaded_file
函数中,程序首先检查是否有文件被上传。如果有,定义一个基本路径 tempDir
用于保存文件。如果该路径不存在,程序会创建它。接着,程序获取上传文件的完整路径,并以二进制写模式打开文件,将上传的内容写入到指定路径中。最后,函数返回保存文件的完整路径,如果没有文件上传,则返回 None
。
concat_results
函数用于显示检测结果。它接收检测结果、位置、置信度和用时作为参数,并将这些信息组织成一个字典,随后使用 pandas
创建一个 DataFrame 并返回。这使得结果的展示更加结构化和易于处理。
load_default_image
函数用于加载一个默认的图片。它通过调用 abs_path
函数获取默认图片的路径,并使用 PIL
的 Image.open
方法打开并返回该图片对象。
最后,get_camera_names
函数用于获取可用摄像头的名称列表。它首先定义一个包含“摄像头检测关闭”和索引“0”的列表。然后,程序通过循环最多测试 10 个摄像头,使用 cv2.VideoCapture
尝试打开每个摄像头。如果成功打开,则将该摄像头的索引添加到列表中。循环结束后,如果列表中只有一个元素,说明没有找到可用的摄像头,程序会在 Streamlit 界面上显示相应的信息。最终,该函数返回可用摄像头的名称列表。
整体来看,这个文件提供了一些基础的工具函数,便于在使用 Streamlit 开发应用时处理文件上传、结果展示和摄像头管理等常见任务。
12.系统整体结构(节选)
程序整体功能和构架概括
该程序是一个基于 YOLO(You Only Look Once)系列的目标检测框架,主要用于训练和推理任务。它的架构分为多个模块,每个模块负责特定的功能,形成一个完整的目标检测解决方案。整体上,程序的功能包括数据集的构建与加载、模型的训练与推理、结果的可视化与展示,以及用户界面的交互。
- 数据处理:通过
utils.py
提供的工具函数,处理文件上传、加载默认图像和获取摄像头名称。 - 模型构建与训练:通过
train.py
和其他模型文件(如model.py
和autobackend.py
)实现模型的定义、训练和推理。 - 结果展示:通过
ui.py
提供用户界面,展示检测结果和训练进度。 - 模块化设计:各个功能模块(如数据处理、模型定义、训练过程等)被清晰地分开,便于维护和扩展。
文件功能整理表
文件路径 | 功能描述 |
---|---|
D:\tools\20240809\code\ui.py | 提供用户界面,允许用户上传文件并运行指定的脚本。 |
D:\tools\20240809\code\code\ultralytics\data\explorer\__init__.py | 导入并暴露 plot_query_result 函数,用于结果可视化。 |
D:\tools\20240809\code\70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\autobackend.py | 动态选择后端以进行推理,支持多种模型格式。 |
D:\tools\20240809\code\code\ultralytics\models\nas\model.py | 定义 YOLO-NAS 模型,提供模型加载和推理功能。 |
D:\tools\20240809\code\train.py | 训练 YOLO 模型,构建数据集,监控训练过程和损失。 |
D:\tools\20240809\code\code\utils.py | 提供实用函数,如文件上传、结果展示和摄像头管理。 |
D:\tools\20240809\code\code\ultralytics\models\sam\model.py | 定义 SAM 模型,可能用于特定的目标检测任务。 |
D:\tools\20240809\code\code\ultralytics\models\__init__.py | 模块初始化,导入和管理不同模型的接口。 |
D:\tools\20240809\code\70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\metrics.py | 提供评估指标计算功能,用于模型性能评估。 |
D:\tools\20240809\code\70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\yolo\pose\train.py | 训练 YOLO Pose 模型,专注于姿态估计任务。 |
D:\tools\20240809\code\code\ultralytics\data\annotator.py | 提供数据标注功能,可能用于可视化标注结果。 |
D:\tools\20240809\code\code\ultralytics\models\nas\__init__.py | 模块初始化,导入 NAS 模型相关的功能。 |
以上表格总结了每个文件的主要功能,帮助理解整个程序的架构和功能模块。
注意:由于此博客编辑较早,上面“11.项目核心源码讲解(再也不用担心看不懂代码逻辑)”中部分代码可能会优化升级,仅供参考学习,完整“训练源码”、“Web前端界面”和“70+种创新点源码”以“13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)”的内容为准。
13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)
参考原始博客1: https://gitee.com/qunshansj/oilwell614
参考原始博客2: https://github.com/VisionMillionDataStudio/oilwell614 ](https://i-blog.csdnimg.cn/direct/a56dcdeb3ca54fb9afd28150b5c38ee3.png#pic_center)