油井检测系统源码分享

油井检测检测系统源码分享

[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]

1.研究背景与意义

项目参考AAAI Association for the Advancement of Artificial Intelligence

项目来源AACV Association for the Advancement of Computer Vision

研究背景与意义

随着全球能源需求的不断增长,石油作为重要的能源资源,其开采和管理变得愈发重要。油井的检测与监控不仅关系到油田的生产效率,还直接影响到环境保护和资源的可持续利用。传统的油井检测方法往往依赖人工巡检,效率低下且容易受到人为因素的影响,无法满足现代化油田管理的需求。因此,基于计算机视觉和深度学习技术的自动化油井检测系统应运而生,成为提升油田管理效率的重要手段。

近年来,YOLO(You Only Look Once)系列目标检测算法因其高效性和实时性而受到广泛关注。YOLOv8作为该系列的最新版本,进一步提升了检测精度和速度,适用于各种复杂场景的目标检测任务。然而,针对油井检测这一特定应用场景,YOLOv8仍然面临着一些挑战,如数据集的稀缺性、油井图像的多样性及环境因素的影响等。因此,改进YOLOv8以适应油井检测的需求,不仅具有重要的学术价值,也为实际应用提供了新的解决方案。

本研究的核心在于基于改进YOLOv8的油井检测系统,利用一个包含3500张油井图像的数据集进行训练和测试。该数据集专注于油井这一特定类别,涵盖了不同的拍摄角度、光照条件和背景环境,旨在提高模型对油井目标的识别能力。通过对YOLOv8的改进,我们希望能够增强其在油井检测中的表现,特别是在小目标检测和复杂背景下的鲁棒性。

本研究的意义不仅在于技术上的创新,更在于其对油田管理实践的推动。通过实现高效、准确的油井检测系统,可以大幅度降低人工巡检的成本,提高油田的管理效率。此外,自动化的检测系统能够实时监控油井的状态,及时发现潜在的安全隐患,从而减少环境污染和资源浪费,促进可持续发展。

在理论层面,本研究将为目标检测领域提供新的思路和方法,特别是在特定领域应用中的模型改进与优化方面。通过对YOLOv8的改进,我们将探索深度学习模型在特定任务中的适应性与灵活性,为后续研究提供参考。

综上所述,基于改进YOLOv8的油井检测系统的研究,不仅具有重要的学术价值和应用前景,还将为石油行业的数字化转型和智能化管理提供有力支持。通过提升油井检测的自动化水平,我们期待能够为油田的可持续发展贡献一份力量。

2.图片演示

![### 5.全套项目环境部署视频教程(零基础手把手教学)

5.1 环境部署教程链接(零基础手把手教学)

5.2 安装Python虚拟环境创建和依赖库安装视频教程链接(零基础手把手教学)

6.手把手YOLOV8训练视频教程(零基础小白有手就能学会)

6.1 手把手YOLOV8训练视频教程(零基础小白有手就能学会)

7.70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

7.1 70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

8.70+种全套YOLOV8创新点原理讲解(非科班也可以轻松写刊发刊,V10版本正在科研待更新)

由于篇幅限制,每个创新点的具体原理讲解就不一一展开,具体见下列网址中的创新点对应子项目的技术原理博客网址【Blog】:

9.png

8.1 70+种全套YOLOV8创新点原理讲解链接

9.系统功能展示(检测对象为举例,实际内容以本项目数据集为准)

图9.1.系统支持检测结果表格显示

图9.2.系统支持置信度和IOU阈值手动调节

图9.3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)

图9.4.系统支持摄像头实时识别

图9.5.系统支持图片识别

图9.6.系统支持视频识别

图9.7.系统支持识别结果文件自动保存

图9.8.系统支持Excel导出检测结果数据

10.png

11.png

12.png

13.png

14.png

15.png

16.png

17.png

10.原始YOLOV8算法原理

原始YOLOv8算法原理

YOLOv8算法是由Ultralytics公司于2023年发布的YOLO系列最新版本,作为YOLO系列的继承者,YOLOv8在多个方面进行了创新和改进,旨在提升目标检测的效率和准确性。YOLOv8的设计理念依然遵循了YOLO系列的核心思想,即实时性和高效性,然而在实现上却引入了许多新的技术和结构,以适应日益复杂的计算机视觉任务。

首先,YOLOv8在数据预处理方面延续了YOLOv5的策略,采用了多种数据增强技术,包括马赛克增强、混合增强、空间扰动和颜色扰动等。这些增强手段不仅提高了模型的鲁棒性,还能有效扩展训练数据集的多样性,使得模型在面对不同场景和光照条件时,依然能够保持较高的检测性能。

在骨干网络结构方面,YOLOv8的设计借鉴了YOLOv5的主干网络架构,整体结构清晰且具有良好的可扩展性。YOLOv8将原有的C3模块替换为新的C2f模块,这一改进显著增强了特征提取的能力。C2f模块通过引入更多的分支结构,丰富了梯度回传时的支流,使得网络在学习过程中能够更好地捕捉到不同层次的特征信息。这种设计不仅提高了特征提取的效率,还增强了模型的表达能力。

YOLOv8还采用了FPN-PAN结构来构建特征金字塔,这一结构使得多尺度信息之间的融合更加充分。尽管FPN-PAN的基本框架与YOLOv5相似,但YOLOv8在其中的C3模块被C2f模块所替代,进一步提升了特征融合的效果。这种结构的优势在于,它能够有效地处理不同尺度的目标,使得模型在面对各种大小的物体时,依然能够保持较高的检测精度。

在检测头的设计上,YOLOv8采用了解耦头结构,这一结构的引入使得分类和定位任务可以在不同的分支中独立进行,从而提高了模型的灵活性和准确性。与传统的耦合头相比,解耦头能够更好地处理复杂的目标检测任务,尤其是在目标密集的场景中,解耦头的优势愈加明显。此外,YOLOv8采用了Anchor-Free的检测方式,进一步简化了模型的设计,减少了对预定义锚框的依赖,使得模型在处理不同形状和大小的目标时,能够更加自适应。

在标签分配策略方面,YOLOv8引入了动态标签分配策略,取代了YOLOv5中依赖于数据集的候选框聚类方法。这一策略通过使用目标框和目标分数来进行标签分配,避免了因数据集不足而导致的标签不准确问题。YOLOv8的损失函数设计也有所创新,采用了Varifocal Loss作为分类损失,并结合CIoU Loss与DFL Loss作为回归损失。这种损失函数的设计旨在更好地平衡正负样本的贡献,尤其是在处理高质量正样本时,能够有效提升模型的性能。

总的来说,YOLOv8算法在多个方面进行了创新和改进,尤其是在网络结构、数据处理和损失函数等方面的优化,使得其在目标检测任务中表现出色。通过引入C2f模块、解耦头结构和动态标签分配策略,YOLOv8不仅提升了模型的准确性和鲁棒性,还增强了其在实时检测中的应用潜力。这些改进使得YOLOv8在计算机视觉领域的目标检测任务中,成为了一个值得关注的重要进展。随着YOLOv8的推出,目标检测技术将迎来新的发展机遇,为各类应用场景提供更加高效和精准的解决方案。

18.png

11.项目核心源码讲解(再也不用担心看不懂代码逻辑)

11.1 ui.py

以下是经过简化和注释的核心代码部分:

import sys
import subprocess

def run_script(script_path):
    """
    使用当前 Python 环境运行指定的脚本。

    Args:
        script_path (str): 要运行的脚本路径
    """
    # 获取当前 Python 解释器的路径
    python_path = sys.executable

    # 构建运行命令,使用 streamlit 运行指定的脚本
    command = f'"{python_path}" -m streamlit run "{script_path}"'

    # 执行命令并等待其完成
    result = subprocess.run(command, shell=True)
    
    # 检查命令执行结果,如果返回码不为0,则表示出错
    if result.returncode != 0:
        print("脚本运行出错。")

# 主程序入口
if __name__ == "__main__":
    # 指定要运行的脚本路径
    script_path = "web.py"  # 这里可以直接指定脚本名称

    # 调用函数运行脚本
    run_script(script_path)

代码注释说明:

  1. 导入模块

    • sys:用于获取当前 Python 解释器的路径。
    • subprocess:用于执行外部命令。
  2. run_script 函数

    • 该函数接受一个脚本路径作为参数,并使用当前 Python 环境运行该脚本。
    • 使用 sys.executable 获取当前 Python 解释器的路径,以确保脚本在正确的环境中运行。
    • 构建命令字符串,使用 streamlit 模块运行指定的脚本。
    • 使用 subprocess.run 执行命令,并等待其完成。
    • 检查命令的返回码,如果不为0,表示脚本运行出错,并打印错误信息。
  3. 主程序入口

    • 使用 if __name__ == "__main__": 确保该代码块仅在直接运行脚本时执行。
    • 指定要运行的脚本路径(在这里直接指定为 "web.py")。
    • 调用 run_script 函数以运行指定的脚本。

这个文件是一个名为 ui.py 的 Python 脚本,主要功能是通过当前的 Python 环境来运行一个指定的脚本。首先,文件导入了几个必要的模块,包括 sysossubprocess,这些模块提供了与系统交互和执行外部命令的功能。此外,还导入了 abs_path 函数,该函数来自 QtFusion.path 模块,用于获取文件的绝对路径。

ui.py 中,定义了一个名为 run_script 的函数,该函数接受一个参数 script_path,表示要运行的脚本的路径。函数内部首先获取当前 Python 解释器的路径,接着构建一个命令字符串,这个命令使用 streamlit 模块来运行指定的脚本。streamlit 是一个用于构建数据应用的库。

随后,使用 subprocess.run 方法执行构建好的命令。如果命令执行的返回码不为零,表示脚本运行过程中出现了错误,程序会打印出“脚本运行出错”的提示信息。

在文件的最后部分,使用 if __name__ == "__main__": 语句来确保当脚本作为主程序运行时,下面的代码才会被执行。在这里,指定了要运行的脚本路径为 web.py,并调用 run_script 函数来执行这个脚本。

总的来说,这个 ui.py 文件的主要作用是提供一个简单的接口,通过命令行来运行一个 Streamlit 应用脚本 web.py,并处理可能出现的错误。

11.2 code\ultralytics\data\explorer_init_.py

以下是保留的核心代码部分,并附上详细的中文注释:

# 导入必要的工具函数
from .utils import plot_query_result

# 定义模块的公开接口,允许外部访问的内容
__all__ = ["plot_query_result"]

代码注释说明:

  1. from .utils import plot_query_result

    • 这一行代码从当前包的 utils 模块中导入了 plot_query_result 函数。这里的 . 表示当前目录,意味着 utils 是与当前模块同级的一个模块。
    • plot_query_result 可能是一个用于绘制查询结果的函数,具体功能需要查看 utils 模块的实现。
  2. __all__ = ["plot_query_result"]

    • 这一行定义了模块的 __all__ 变量,它是一个列表,指定了当使用 from module import * 语句时,哪些名称是可以被导入的。
    • 在这里,只有 plot_query_result 被列入 __all__,这意味着其他未列出的名称将不会被导入,帮助控制模块的公共接口,避免不必要的名称暴露。

这个程序文件是一个Python模块,属于Ultralytics YOLO项目的一部分,遵循AGPL-3.0许可证。文件的主要功能是导入和暴露一个名为plot_query_result的函数,来自同一目录下的utils模块。

在文件的开头,有一个注释行,标明了该项目的名称“Ultralytics YOLO”以及所使用的许可证类型。这种注释通常用于提供项目的基本信息,便于其他开发者了解该代码的来源和使用条款。

接下来,文件通过from .utils import plot_query_result语句导入了utils模块中的plot_query_result函数。这里的.表示当前目录,表明utils模块与当前文件在同一层级。

最后,__all__变量被定义为一个列表,包含了plot_query_result。这个变量的作用是指明当使用from module import *语句时,哪些名称是可以被导入的。这是一种控制模块导出接口的方式,帮助其他开发者清楚地知道哪些功能是模块的公共接口。

总体而言,这个文件的结构简单明了,主要是为了组织和管理代码,使得plot_query_result函数可以被其他模块方便地使用。

11.3 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\autobackend.py

以下是经过简化并注释的核心代码部分,主要集中在 AutoBackend 类的初始化和推理过程:

import torch
import torch.nn as nn
import cv2
import numpy as np
from pathlib import Path
from ultralytics.utils import LOGGER, yaml_load
from ultralytics.utils.downloads import attempt_download_asset

class AutoBackend(nn.Module):
    """
    处理 Ultralytics YOLO 模型的动态后端选择。
    """

    @torch.no_grad()
    def __init__(self, weights='yolov8n.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True, verbose=True):
        """
        初始化 AutoBackend 进行推理。

        参数:
            weights (str): 模型权重文件的路径,默认为 'yolov8n.pt'。
            device (torch.device): 运行模型的设备,默认为 CPU。
            dnn (bool): 是否使用 OpenCV DNN 模块进行 ONNX 推理,默认为 False。
            data (str | Path | optional): 包含类名的额外 data.yaml 文件的路径,默认为 None。
            fp16 (bool): 是否启用半精度推理,默认为 False。
            fuse (bool): 是否融合 Conv2D + BatchNorm 层以优化,默认为 True。
            verbose (bool): 是否启用详细日志,默认为 True。
        """
        super().__init__()
        w = str(weights[0] if isinstance(weights, list) else weights)  # 处理权重路径
        model_type = self._model_type(w)  # 确定模型类型
        self.fp16 = fp16  # 半精度标志
        self.device = device  # 设备设置

        # 下载模型权重(如果不是本地文件)
        if not model_type[0]:  # 如果不是 PyTorch 模型
            w = attempt_download_asset(w)

        # 加载模型
        if model_type[0]:  # 如果是 PyTorch 模型
            from ultralytics.nn.tasks import attempt_load_weights
            self.model = attempt_load_weights(w, device=device, inplace=True, fuse=fuse)
        elif model_type[1]:  # TorchScript
            self.model = torch.jit.load(w, map_location=device)
        elif dnn:  # ONNX OpenCV DNN
            self.net = cv2.dnn.readNetFromONNX(w)
        elif model_type[2]:  # ONNX Runtime
            import onnxruntime
            self.session = onnxruntime.InferenceSession(w)
        # 其他模型类型的加载省略...

        # 加载外部元数据 YAML
        metadata = self._load_metadata(weights)
        self.names = self._check_class_names(metadata.get('names', data))

    def forward(self, im, augment=False, visualize=False):
        """
        对 YOLOv8 MultiBackend 模型进行推理。

        参数:
            im (torch.Tensor): 要进行推理的图像张量。
            augment (bool): 是否在推理过程中进行数据增强,默认为 False。
            visualize (bool): 是否可视化输出预测,默认为 False。

        返回:
            (tuple): 包含原始输出张量和处理后的输出(如果 visualize=True)。
        """
        if self.fp16 and im.dtype != torch.float16:
            im = im.half()  # 转换为 FP16
        # 根据模型类型进行推理
        if self.model:  # PyTorch
            y = self.model(im, augment=augment, visualize=visualize)
        elif self.dnn:  # ONNX OpenCV DNN
            im = im.cpu().numpy()  # 转换为 numpy
            self.net.setInput(im)
            y = self.net.forward()
        elif self.session:  # ONNX Runtime
            im = im.cpu().numpy()  # 转换为 numpy
            y = self.session.run(None, {self.session.get_inputs()[0].name: im})
        # 其他推理方式省略...

        return y  # 返回推理结果

    @staticmethod
    def _model_type(p='path/to/model.pt'):
        """
        根据模型文件路径返回模型类型。

        参数:
            p: 模型文件的路径,默认为 'path/to/model.pt'。
        """
        # 省略具体实现...
        return model_types  # 返回模型类型列表

    def _load_metadata(self, weights):
        """
        加载模型的元数据。

        参数:
            weights: 模型权重路径。

        返回:
            metadata: 加载的元数据。
        """
        # 省略具体实现...
        return metadata

    def _check_class_names(self, names):
        """
        检查类名的有效性。

        参数:
            names: 类名列表或字典。

        返回:
            names: 处理后的类名字典。
        """
        # 省略具体实现...
        return names

代码说明:

  1. 类定义AutoBackend 类用于处理不同模型格式的推理。
  2. 初始化方法:在 __init__ 方法中,模型权重会被加载,并根据不同的模型类型(如 PyTorch、ONNX 等)进行初始化。
  3. 推理方法forward 方法用于执行推理,根据输入的图像张量和模型类型返回推理结果。
  4. 辅助方法:包括 _model_type 用于确定模型类型,_load_metadata 用于加载模型的元数据,以及 _check_class_names 用于验证类名的有效性。

通过这种方式,代码的核心逻辑得以保留,同时也提供了详细的中文注释以帮助理解。

这个程序文件是Ultralytics YOLOv8模型的一个核心部分,主要负责动态选择后端以进行推理。文件中包含了多个导入的库和模块,提供了必要的功能支持,如图像处理、模型加载和推理等。

首先,文件中定义了一个check_class_names函数,用于检查和处理类名。该函数可以将类名从列表转换为字典,并确保类名的索引在有效范围内。如果类名以特定格式(如ImageNet类代码)给出,它还会将其映射为可读的名称。

接下来,定义了AutoBackend类,该类继承自nn.Module,用于处理不同格式模型的推理。该类支持多种模型格式,包括PyTorch、ONNX、TensorRT等,并提供动态切换后端的能力,以便在不同平台上部署模型。

__init__方法中,类初始化了模型的权重、设备、数据类型等参数。根据传入的模型文件路径,判断模型的类型并加载相应的模型。对于不同的模型格式,使用不同的加载方式,例如使用torch.jit.load加载TorchScript模型,使用cv2.dnn.readNetFromONNX加载ONNX模型等。

此外,forward方法实现了模型的推理过程。该方法接收输入图像,并根据模型类型执行推理,返回输出结果。对于不同的后端,输入图像会被转换为相应的格式,例如将PyTorch张量转换为NumPy数组,或直接使用TensorFlow的接口进行推理。

warmup方法用于预热模型,通过运行一次前向传播来提高后续推理的效率。_apply_default_class_names_model_type是静态方法,分别用于处理默认类名和确定模型类型。

总的来说,这个文件的主要功能是为YOLOv8模型提供一个灵活的推理接口,支持多种模型格式,并能根据输入的模型文件动态选择合适的后端进行推理。这种设计使得用户可以方便地在不同的环境中使用YOLOv8模型,提升了模型的可用性和适应性。

11.4 code\ultralytics\models\nas\model.py

以下是经过简化并注释的YOLO-NAS模型接口代码的核心部分:

from pathlib import Path
import torch
from ultralytics.engine.model import Model
from ultralytics.utils.torch_utils import model_info, smart_inference_mode
from .predict import NASPredictor
from .val import NASValidator

class NAS(Model):
    """
    YOLO NAS模型用于目标检测。

    该类提供了YOLO-NAS模型的接口,并扩展了Ultralytics引擎中的`Model`类。
    旨在通过预训练或自定义训练的YOLO-NAS模型来简化目标检测任务。
    """

    def __init__(self, model="yolo_nas_s.pt") -> None:
        """初始化NAS模型,使用提供的模型或默认的'yolo_nas_s.pt'模型。"""
        # 确保提供的模型不是YAML配置文件
        assert Path(model).suffix not in (".yaml", ".yml"), "YOLO-NAS模型仅支持预训练模型。"
        # 调用父类构造函数
        super().__init__(model, task="detect")

    @smart_inference_mode()
    def _load(self, weights: str, task: str):
        """加载现有的NAS模型权重,或在未提供权重时创建新的NAS模型。"""
        import super_gradients

        suffix = Path(weights).suffix
        # 根据权重文件后缀加载模型
        if suffix == ".pt":
            self.model = torch.load(weights)  # 加载.pt文件
        elif suffix == "":
            self.model = super_gradients.training.models.get(weights, pretrained_weights="coco")  # 获取预训练模型

        # 标准化模型属性
        self.model.fuse = lambda verbose=True: self.model  # 融合模型
        self.model.stride = torch.tensor([32])  # 设置步幅
        self.model.names = dict(enumerate(self.model._class_names))  # 类别名称映射
        self.model.is_fused = lambda: False  # 用于信息获取
        self.model.yaml = {}  # 用于信息获取
        self.model.pt_path = weights  # 导出时的权重路径
        self.model.task = "detect"  # 导出时的任务类型

    def info(self, detailed=False, verbose=True):
        """
        记录模型信息。

        参数:
            detailed (bool): 是否显示详细信息。
            verbose (bool): 控制输出的详细程度。
        """
        return model_info(self.model, detailed=detailed, verbose=verbose, imgsz=640)

    @property
    def task_map(self):
        """返回任务与相应预测器和验证器类的映射字典。"""
        return {"detect": {"predictor": NASPredictor, "validator": NASValidator}}

代码核心部分说明:

  1. 类定义NAS类继承自Model类,专门用于YOLO-NAS模型的目标检测。
  2. 初始化方法:在初始化时检查模型文件的类型,确保只接受预训练模型文件(.pt),并调用父类的初始化方法。
  3. 加载模型_load方法根据权重文件的后缀加载模型,支持从.pt文件或通过名称获取预训练模型。还会标准化模型的一些属性以适应后续的使用。
  4. 模型信息info方法用于记录和返回模型的相关信息,可以选择详细程度和输出的详细性。
  5. 任务映射task_map属性返回一个字典,映射任务到相应的预测器和验证器类,便于扩展和管理不同的任务。

这个程序文件定义了一个名为 NAS 的类,属于 Ultralytics YOLO(You Only Look Once)系列的模型接口,专门用于目标检测任务。文件的开头部分提供了一个简单的示例,展示了如何使用这个类来加载模型并进行预测。

在文件中,首先导入了一些必要的库和模块,包括 Path(用于处理文件路径)、torch(PyTorch库)以及 Ultralytics 引擎中的 Model 类和一些工具函数。接着,定义了 NAS 类,该类继承自 Model 类,目的是扩展 Ultralytics 引擎的功能,以便于使用预训练或自定义训练的 YOLO-NAS 模型进行目标检测。

NAS 类的构造函数 __init__ 接受一个参数 model,默认值为 'yolo_nas_s.pt',用于指定要加载的预训练模型的路径。构造函数中有一个断言,确保传入的模型路径后缀不是 YAML 格式,因为 YOLO-NAS 模型只支持预训练模型,而不支持配置文件。

_load 方法用于加载模型权重。如果传入的权重文件是 .pt 格式,则使用 torch.load 加载模型;如果没有后缀,则通过 super_gradients 库获取预训练模型。此方法还对模型进行了一些标准化处理,包括设置模型的步幅、类别名称等属性。

info 方法用于记录和返回模型的信息,可以选择是否显示详细信息和控制输出的冗长程度。

最后,task_map 属性返回一个字典,将任务映射到相应的预测器和验证器类,这里映射的是目标检测任务对应的 NASPredictorNASValidator 类。

整体来看,这个文件为 YOLO-NAS 模型提供了一个清晰的接口,使得用户能够方便地加载模型并进行目标检测,同时也确保了模型的标准化和信息的可获取性。

11.5 train.py

以下是代码中最核心的部分,并附上详细的中文注释:

class DetectionTrainer(BaseTrainer):
    """
    DetectionTrainer类,继承自BaseTrainer类,用于基于检测模型的训练。
    """

    def build_dataset(self, img_path, mode="train", batch=None):
        """
        构建YOLO数据集。

        参数:
            img_path (str): 包含图像的文件夹路径。
            mode (str): 模式,`train`表示训练模式,`val`表示验证模式,用户可以为每种模式自定义不同的增强。
            batch (int, optional): 批次大小,仅用于`rect`模式。默认为None。
        """
        gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)  # 获取模型的最大步幅
        return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)

    def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
        """构造并返回数据加载器。"""
        assert mode in ["train", "val"]  # 确保模式为训练或验证
        with torch_distributed_zero_first(rank):  # 在分布式训练中,确保数据集只初始化一次
            dataset = self.build_dataset(dataset_path, mode, batch_size)  # 构建数据集
        shuffle = mode == "train"  # 训练模式下打乱数据
        if getattr(dataset, "rect", False) and shuffle:
            LOGGER.warning("WARNING ⚠️ 'rect=True'与DataLoader的shuffle不兼容,设置shuffle=False")
            shuffle = False  # 如果使用rect模式,则不打乱数据
        workers = self.args.workers if mode == "train" else self.args.workers * 2  # 设置工作线程数
        return build_dataloader(dataset, batch_size, workers, shuffle, rank)  # 返回数据加载器

    def preprocess_batch(self, batch):
        """对一批图像进行预处理,包括缩放和转换为浮点数。"""
        batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255  # 将图像转换为浮点数并归一化
        if self.args.multi_scale:  # 如果启用多尺度训练
            imgs = batch["img"]
            sz = (
                random.randrange(self.args.imgsz * 0.5, self.args.imgsz * 1.5 + self.stride)
                // self.stride
                * self.stride
            )  # 随机选择一个新的尺寸
            sf = sz / max(imgs.shape[2:])  # 计算缩放因子
            if sf != 1:
                ns = [
                    math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:]
                ]  # 计算新的形状
                imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)  # 进行插值
            batch["img"] = imgs  # 更新图像
        return batch

    def set_model_attributes(self):
        """设置模型的属性,包括类别数量和名称。"""
        self.model.nc = self.data["nc"]  # 将类别数量附加到模型
        self.model.names = self.data["names"]  # 将类别名称附加到模型
        self.model.args = self.args  # 将超参数附加到模型

    def get_model(self, cfg=None, weights=None, verbose=True):
        """返回一个YOLO检测模型。"""
        model = DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)  # 创建检测模型
        if weights:
            model.load(weights)  # 加载权重
        return model

    def get_validator(self):
        """返回用于YOLO模型验证的DetectionValidator。"""
        self.loss_names = "box_loss", "cls_loss", "dfl_loss"  # 定义损失名称
        return yolo.detect.DetectionValidator(
            self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
        )

    def plot_training_samples(self, batch, ni):
        """绘制带有注释的训练样本。"""
        plot_images(
            images=batch["img"],
            batch_idx=batch["batch_idx"],
            cls=batch["cls"].squeeze(-1),
            bboxes=batch["bboxes"],
            paths=batch["im_file"],
            fname=self.save_dir / f"train_batch{ni}.jpg",
            on_plot=self.on_plot,
        )

    def plot_metrics(self):
        """从CSV文件中绘制指标。"""
        plot_results(file=self.csv, on_plot=self.on_plot)  # 保存结果图

代码说明:

  1. DetectionTrainer类:这是一个用于训练YOLO检测模型的类,继承自BaseTrainer类。
  2. build_dataset方法:构建YOLO数据集,接受图像路径、模式和批次大小作为参数。
  3. get_dataloader方法:构造数据加载器,确保在分布式训练中只初始化一次数据集。
  4. preprocess_batch方法:对图像批次进行预处理,包括归一化和多尺度处理。
  5. set_model_attributes方法:设置模型的类别数量和名称。
  6. get_model方法:返回一个YOLO检测模型,可以选择加载预训练权重。
  7. get_validator方法:返回用于验证模型的检测验证器。
  8. plot_training_samples方法:绘制训练样本及其注释。
  9. plot_metrics方法:从CSV文件中绘制训练指标。

这个程序文件 train.py 是一个用于训练 YOLO(You Only Look Once)目标检测模型的脚本,继承自 BaseTrainer 类。文件中包含了多个方法,主要用于构建数据集、获取数据加载器、预处理图像、设置模型属性、获取模型、验证模型、记录损失、输出训练进度、绘制训练样本和绘制训练指标等功能。

首先,DetectionTrainer 类的构造函数中定义了如何构建数据集。build_dataset 方法接收图像路径、模式(训练或验证)和批次大小,并利用 build_yolo_dataset 函数创建一个 YOLO 数据集。该方法还根据模型的步幅计算图像的最小尺寸。

接下来,get_dataloader 方法用于构建数据加载器。它会根据模式(训练或验证)来初始化数据集,并根据模式决定是否打乱数据。该方法还考虑了多进程的工作线程数量。

在数据预处理方面,preprocess_batch 方法对图像进行缩放和转换为浮点数,确保图像数据在训练时处于合适的范围内。它还支持多尺度训练,通过随机选择图像的大小来增强模型的鲁棒性。

set_model_attributes 方法用于设置模型的属性,包括类别数量和类别名称,以便模型能够正确识别不同的目标。

get_model 方法返回一个 YOLO 检测模型,并可以加载预训练的权重。get_validator 方法则返回一个用于验证模型的验证器。

在损失记录方面,label_loss_items 方法用于返回一个包含训练损失项的字典,方便在训练过程中进行监控。

此外,progress_string 方法返回一个格式化的字符串,显示训练进度,包括当前的 epoch、GPU 内存使用情况、损失值、实例数量和图像大小等信息。

为了可视化训练过程,plot_training_samples 方法绘制训练样本及其标注,plot_metrics 方法绘制从 CSV 文件中提取的指标,plot_training_labels 方法则创建一个带标签的训练图,展示训练数据的标注情况。

整体而言,这个文件提供了一个完整的框架,用于训练 YOLO 模型,支持数据集构建、数据加载、模型训练、损失监控和结果可视化等功能。

11.6 code\utils.py

以下是代码中最核心的部分,并附上详细的中文注释:

import os
import cv2
import pandas as pd
import streamlit as st
from PIL import Image
from QtFusion.path import abs_path

def save_uploaded_file(uploaded_file):
    """
    保存上传的文件到服务器上。

    Args:
        uploaded_file (UploadedFile): 通过Streamlit上传的文件。

    Returns:
        str: 保存文件的完整路径,如果没有文件上传则返回 None。
    """
    # 检查是否有文件上传
    if uploaded_file is not None:
        base_path = "tempDir"  # 定义文件保存的基本路径

        # 如果路径不存在,创建这个路径
        if not os.path.exists(base_path):
            os.makedirs(base_path)
        
        # 获取文件的完整路径
        file_path = os.path.join(base_path, uploaded_file.name)

        # 以二进制写模式打开文件
        with open(file_path, "wb") as f:
            f.write(uploaded_file.getbuffer())  # 写入文件

        return file_path  # 返回文件路径

    return None  # 如果没有文件上传,返回 None


def concat_results(result, location, confidence, time):
    """
    显示检测结果。

    Args:
        result (str): 检测结果。
        location (str): 检测位置。
        confidence (str): 置信度。
        time (str): 检测用时。

    Returns:
        DataFrame: 包含检测结果的 DataFrame。
    """
    # 创建一个包含这些信息的 DataFrame
    result_data = {
        "识别结果": [result],
        "位置": [location],
        "置信度": [confidence],
        "用时": [time]
    }

    results_df = pd.DataFrame(result_data)  # 将结果数据转换为 DataFrame
    return results_df  # 返回结果 DataFrame


def get_camera_names():
    """
    获取可用摄像头名称列表。

    Returns:
        list: 返回包含“未启用摄像头”和可用摄像头索引号的列表。
    """
    camera_names = ["摄像头检测关闭", "0"]  # 初始化摄像头名称列表
    max_test_cameras = 10  # 定义要测试的最大摄像头数量

    # 循环检测摄像头
    for i in range(max_test_cameras):
        cap = cv2.VideoCapture(i, cv2.CAP_DSHOW)  # 尝试打开摄像头
        if cap.isOpened() and str(i) not in camera_names:  # 如果摄像头打开成功且未在列表中
            camera_names.append(str(i))  # 添加摄像头索引到列表
            cap.release()  # 释放摄像头资源

    # 如果没有找到可用的摄像头,输出提示信息
    if len(camera_names) == 1:
        st.write("未找到可用的摄像头")
    
    return camera_names  # 返回摄像头名称列表

代码核心部分说明:

  1. save_uploaded_file 函数:用于保存用户上传的文件到服务器的指定目录。检查上传的文件是否存在,如果存在则创建目录并保存文件,最后返回文件的完整路径。

  2. concat_results 函数:用于将检测结果、位置、置信度和用时信息整理成一个 Pandas DataFrame,方便后续的数据处理和展示。

  3. get_camera_names 函数:用于检测可用的摄像头,并返回一个包含摄像头索引的列表。如果没有找到可用的摄像头,则会给出提示。

这个程序文件 utils.py 包含了一些用于处理文件上传、显示检测结果、加载默认图片以及获取可用摄像头名称的实用函数。首先,文件通过导入必要的库来实现这些功能,包括操作系统相关的 os、图像处理库 cv2、数据处理库 pandas、Web 应用框架 streamlit、图像处理库 PIL 以及自定义路径处理的 abs_path

save_uploaded_file 函数中,程序首先检查是否有文件被上传。如果有,定义一个基本路径 tempDir 用于保存文件。如果该路径不存在,程序会创建它。接着,程序获取上传文件的完整路径,并以二进制写模式打开文件,将上传的内容写入到指定路径中。最后,函数返回保存文件的完整路径,如果没有文件上传,则返回 None

concat_results 函数用于显示检测结果。它接收检测结果、位置、置信度和用时作为参数,并将这些信息组织成一个字典,随后使用 pandas 创建一个 DataFrame 并返回。这使得结果的展示更加结构化和易于处理。

load_default_image 函数用于加载一个默认的图片。它通过调用 abs_path 函数获取默认图片的路径,并使用 PILImage.open 方法打开并返回该图片对象。

最后,get_camera_names 函数用于获取可用摄像头的名称列表。它首先定义一个包含“摄像头检测关闭”和索引“0”的列表。然后,程序通过循环最多测试 10 个摄像头,使用 cv2.VideoCapture 尝试打开每个摄像头。如果成功打开,则将该摄像头的索引添加到列表中。循环结束后,如果列表中只有一个元素,说明没有找到可用的摄像头,程序会在 Streamlit 界面上显示相应的信息。最终,该函数返回可用摄像头的名称列表。

整体来看,这个文件提供了一些基础的工具函数,便于在使用 Streamlit 开发应用时处理文件上传、结果展示和摄像头管理等常见任务。

12.系统整体结构(节选)

程序整体功能和构架概括

该程序是一个基于 YOLO(You Only Look Once)系列的目标检测框架,主要用于训练和推理任务。它的架构分为多个模块,每个模块负责特定的功能,形成一个完整的目标检测解决方案。整体上,程序的功能包括数据集的构建与加载、模型的训练与推理、结果的可视化与展示,以及用户界面的交互。

  • 数据处理:通过 utils.py 提供的工具函数,处理文件上传、加载默认图像和获取摄像头名称。
  • 模型构建与训练:通过 train.py 和其他模型文件(如 model.pyautobackend.py)实现模型的定义、训练和推理。
  • 结果展示:通过 ui.py 提供用户界面,展示检测结果和训练进度。
  • 模块化设计:各个功能模块(如数据处理、模型定义、训练过程等)被清晰地分开,便于维护和扩展。

文件功能整理表

文件路径功能描述
D:\tools\20240809\code\ui.py提供用户界面,允许用户上传文件并运行指定的脚本。
D:\tools\20240809\code\code\ultralytics\data\explorer\__init__.py导入并暴露 plot_query_result 函数,用于结果可视化。
D:\tools\20240809\code\70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\autobackend.py动态选择后端以进行推理,支持多种模型格式。
D:\tools\20240809\code\code\ultralytics\models\nas\model.py定义 YOLO-NAS 模型,提供模型加载和推理功能。
D:\tools\20240809\code\train.py训练 YOLO 模型,构建数据集,监控训练过程和损失。
D:\tools\20240809\code\code\utils.py提供实用函数,如文件上传、结果展示和摄像头管理。
D:\tools\20240809\code\code\ultralytics\models\sam\model.py定义 SAM 模型,可能用于特定的目标检测任务。
D:\tools\20240809\code\code\ultralytics\models\__init__.py模块初始化,导入和管理不同模型的接口。
D:\tools\20240809\code\70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\metrics.py提供评估指标计算功能,用于模型性能评估。
D:\tools\20240809\code\70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\yolo\pose\train.py训练 YOLO Pose 模型,专注于姿态估计任务。
D:\tools\20240809\code\code\ultralytics\data\annotator.py提供数据标注功能,可能用于可视化标注结果。
D:\tools\20240809\code\code\ultralytics\models\nas\__init__.py模块初始化,导入 NAS 模型相关的功能。

以上表格总结了每个文件的主要功能,帮助理解整个程序的架构和功能模块。

注意:由于此博客编辑较早,上面“11.项目核心源码讲解(再也不用担心看不懂代码逻辑)”中部分代码可能会优化升级,仅供参考学习,完整“训练源码”、“Web前端界面”和“70+种创新点源码”以“13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)”的内容为准。

13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)

19.png

参考原始博客1: https://gitee.com/qunshansj/oilwell614

参考原始博客2: https://github.com/VisionMillionDataStudio/oilwell614 ](https://i-blog.csdnimg.cn/direct/a56dcdeb3ca54fb9afd28150b5c38ee3.png#pic_center)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本研究利用Sen+MK方法分析了特定区域内的ET(蒸散发)趋势,重点评估了使用遥感数据的ET空间变化。该方法结合了Sen斜率估算器和Mann-Kendall(MK)检验,为评估长期趋势提供了稳健的框架,同时考虑了时间变化和统计显著性。 主要过程与结果: 1.ET趋势可视化:研究利用ET数据,通过ET-MK和ET趋势图展示了蒸散发在不同区域的空间和时间变化。这些图通过颜色渐变表示不同的ET水平及其趋势。 2.Mann-Kendall检验:应用MK检验来评估ET趋势的统计显著性。检验结果以二元分类图呈现,标明ET变化的显著性,帮助识别出有显著变化的区域。 3.重分类结果:通过重分类处理,将区域根据ET变化的显著性进行分类,从而聚焦于具有显著变化的区域。这一过程确保分析集中在具有实际意义的发现上。 4.最终输出:最终结果以栅格图和png图的形式呈现,支持各种应用,包括政策规划、水资源管理和土地利用变化分析,这些都是基于详细的时空分析。 ------------------------------------------------------------------- 文件夹构造: data文件夹:原始数据,支持分析的基础数据(MOD16A2H ET数据 宁夏部分)。 results文件夹:分析结果与可视化,展示研究成果。 Sen+MK_optimized.py:主分析脚本,适合批量数据处理和自动化分析。 Sen+MK.ipynb:Jupyter Notebook,复现可视化地图。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值