BERT和GPT模型简介

本文简要介绍了BERT和GPT这两种预训练语言模型,BERT被视为NLP的ImageNet时刻,广泛应用于增强NLP任务性能,而GPT主要用于自然语言生成。文章阐述了BERT的结构和微调过程,以及GPT的语言模型特性。
摘要由CSDN通过智能技术生成

1. 引言

从现在的大趋势来看,使用某种模型预训练一个语言模型看起来是一种比较靠谱的方法。从之前 AI2 的 ELMo,到 OpenAI 的 fine-tune transformer,再到 Google 的 BERT、GPT,全都是对预训练的语言模型的应用。

本文将主要介绍 BERT 和 GPT 这两种常见语言模型及其应用场景,较少涉及具体原理的讲解(自身水平不足)。

2. BERT

2.1 简介

BERT 在2018年出现,被认为是 NLP 的 ImageNet 时刻,可以最好地表示单词和句子,增强对自然语言的理解,进而最好地捕捉基本语义和关系,有效增强了很多下游 NLP 任务的性能。BERT 可以理解为一个非常大的已经训练好的语言模型,涵盖了尽可能多的知识,能够作为很多任务的前置处理模块,类似预处理模块。

BERT 开发的两个步骤:第 1 步,你可以下载预训练好的模型(这个模型是在无标注的数据上训练的,可免费下载)。然后在第 2 步只需要关心模型微调即可。

在这里插入图片描述

BERT 模型都有大量的 Encoder 层,BASE 版本由 12 层 Encoder,Large 版本有 20 层 Encoder。同时,这些 模型也有更大的前馈神经网络(分别有 768 个和 1024 个隐藏层单元

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值