简单总结下Slam14讲里,李群一章的主要概念和结论,不含推导
群:一种集合加上一种运算的代数结构,集合记作A,运算记作.,群记作G=(A,.),群要求运算满足四个条件
1、封闭性
2、结合律
3、幺元
4、逆
SO(n): 特殊正交群(旋转矩阵群)
SE(n):欧式变换群(旋转加位移)
李群:具有连续性质的群,每个李群都具有相应的李代数
李代数:李代数描述李群的局部性质
李代数由一个集合V,一个数域F和一个二元运算[,]组成。如果它们满足以下几条性质,称(V,F,[,])为一个李代数,记作g。
1、封闭性
2、双线性
3、自反性
4、雅可比等价
李扩号:定义中的二元运算[,]
李代数so(3)
李括号:
^代表向量内积运算
ˇ代表反向由内积矩阵转到对应的向量
李代数se(3)
李括号:
理解这两种李群和李代数需要旋转矩阵和空间变换矩阵的前置知识
省略推导过程,关于这两组李群与李代数有个基本的结论,简单来说这两个李群到李代数是指数映射,李代数到李群是对数映射,李群中的元素是矩阵,李代数中的元素是向量,如Slam14讲原书图:
求导
李群中元素是矩阵,对应的位姿变换是乘法,李代数中的元素是向量,对应的位姿变换是加法
BCH公式描述了两个李代数指数映射乘积的完整形式,展开式前几项如下:
[]为李括号
线性近似表达如下:
矩阵有左乘右乘,BCH也有左乘近似右乘近似,他们满足如下关系
用李群和李代数解决位姿变化的求导问题有两种思路:
1、用李代数表示姿态,根据李代数加法对李代数求导。
2、对李群左乘右乘微小扰动,对该扰动求导,称为左扰动模型与右扰动模型
第二种方法比第一种简单的多(仅计结论,推导过程略)
SO(3)左扰动模型
姿态变换R进行扰动,左扰动对应李代数为,对求导,
SE(3)左扰动模型
空间点p经位姿变换T,得到TP,T左乘扰动,设扰动项李代数,则有
李代数计算库:sophus,应用在编程上,使用这个库可以很方便的进行李代数计算