李群与李代数

简单总结下Slam14讲里,李群一章的主要概念和结论,不含推导

群:一种集合加上一种运算的代数结构,集合记作A,运算记作.,群记作G=(A,.),群要求运算满足四个条件

1、封闭性

2、结合律

3、幺元

4、逆

SO(n): 特殊正交群(旋转矩阵群)
SE(n):欧式变换群(旋转加位移)

李群:具有连续性质的群,每个李群都具有相应的李代数

李代数:李代数描述李群的局部性质

李代数由一个集合V,一个数域F和一个二元运算[,]组成。如果它们满足以下几条性质,称(V,F,[,])为一个李代数,记作g。

1、封闭性

2、双线性

3、自反性

4、雅可比等价

李扩号:定义中的二元运算[,]

李代数so(3)

李括号:

^代表向量内积运算

ˇ代表反向由内积矩阵转到对应的向量

李代数se(3)

李括号:

理解这两种李群和李代数需要旋转矩阵和空间变换矩阵的前置知识

省略推导过程,关于这两组李群与李代数有个基本的结论,简单来说这两个李群到李代数是指数映射,李代数到李群是对数映射,李群中的元素是矩阵,李代数中的元素是向量,如Slam14讲原书图:

求导

李群中元素是矩阵,对应的位姿变换是乘法,李代数中的元素是向量,对应的位姿变换是加法

BCH公式描述了两个李代数指数映射乘积的完整形式,展开式前几项如下:

[]为李括号

线性近似表达如下:

矩阵有左乘右乘,BCH也有左乘近似右乘近似,他们满足如下关系

用李群和李代数解决位姿变化的求导问题有两种思路:

1、用李代数表示姿态,根据李代数加法对李代数求导。

2、对李群左乘右乘微小扰动,对该扰动求导,称为左扰动模型与右扰动模型

第二种方法比第一种简单的多(仅计结论,推导过程略)

SO(3)左扰动模型

姿态变换R进行扰动,左扰动对应李代数为,对求导,

SE(3)左扰动模型

空间点p经位姿变换T,得到TP,T左乘扰动,设扰动项李代数,则有

李代数计算库:sophus,应用在编程上,使用这个库可以很方便的进行李代数计算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

well_fly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值