数学基础
整理一些平常开发工作需要用到的基础数学知识
well_fly
想到啥说啥
展开
-
李群与李代数
如果它们满足以下几条性质,称(V,F,[,])为一个李代数,记作g。群:一种集合加上一种运算的代数结构,集合记作A,运算记作.,群记作G=(A,.),群要求运算满足四个条件。李群中元素是矩阵,对应的位姿变换是乘法,李代数中的元素是向量,对应的位姿变换是加法。李代数计算库:sophus,应用在编程上,使用这个库可以很方便的进行李代数计算。李群:具有连续性质的群,每个李群都具有相应的李代数。1、用李代数表示姿态,根据李代数加法对李代数求导。SE(n):欧式变换群(旋转加位移)李代数:李代数描述李群的局部性质。原创 2024-08-04 19:33:53 · 329 阅读 · 0 评论 -
四元数基本概念
绕向量n=(nx, ny, nz)旋转theta角,用四元数表示为。一个实部三个虚部表示空间点的姿态。互为相反数的四元数表示同一种旋转。四元数与欧拉角转换网址。原创 2024-07-22 13:59:40 · 314 阅读 · 0 评论 -
欧拉角简述
常用的RPY组合变换,这种方式常用于飞控和航海领域,按欧拉角理解可以认为是zyx。欧拉角组合变换有多种形式和顺序,另一种典型的比如zyz。还有其他的计算顺序,如xyz等,可自行摸索,大同小异。横滚 roll 俯仰 pitch 偏航 yaw。按齐次变换矩阵展开如下。按齐次变换矩阵展开如下。最终姿态计算公式如下。原创 2024-07-21 14:47:25 · 143 阅读 · 0 评论 -
空间矩阵变换
n,o,a为所表示空间位姿的基地方向向量,p为空间坐标,在指代机械手末端位姿时如图所示。齐次变换矩阵右下角的1又叫缩放系数,可以成比例改变坐标值。旋转矩阵和齐次变换矩阵的乘法,其左乘和右乘具有几何意义。左乘一个举证,相当于将当前坐标系转到另一个坐标系下。三维空间下旋转矩阵为3阶正交矩阵形式如下。右乘一个矩阵,相当于在当前坐标系下变换。简单总结一下三维空间下的矩阵变换。三者相乘,可得空间旋转矩阵。原创 2024-07-21 14:44:19 · 314 阅读 · 0 评论 -
向量基础概念
数据映射到0到1的范围内,可以去量纲,方便比较和分析。以三维向量为例记录一下向量运算法则及几何意义。C同时垂直于A和B,且三者组成一个右手坐标系。混合积(记一下有这个东西,暂不整理)平行四边形角边相加等于对角线。三角形两边相加等于第三边。c反映A和B的方向相似度。向量延长c倍,除法就是。数量积,又叫点积或内积。向量积,又叫外机或叉积。原创 2024-07-20 15:59:34 · 267 阅读 · 0 评论 -
矩阵基础概念
C = A*B, C中第i行第j列的元素的值为:A中第i行所有元素,与B中第j列的所有元素一一对应相乘,然后将相乘后的所有值相加。矩阵的内容太多了,简单整理点概念,研究对象为n*n矩阵。用I表示,左上到右下斜对角线元素全为1,其余元素全为0。n阶实矩阵A,其转置等于自己的逆,成为正交矩阵。C = A*B,A的行数需要与B的列数相等。用右上角负号表示,如矩阵A的逆矩阵为A-实数矩阵相乘,相当于实数乘以矩阵所有元素。用右上角T表示,如矩阵A的转置为AT。同型矩阵之间,元素相互加减。矩阵表示 A B C。原创 2024-07-20 15:57:19 · 116 阅读 · 0 评论