轻松玩转书生·浦语大模型Demo
实战内容
这是书生·浦语2.0大模型趣味Demo的实践,内容包括了:
- 下载书生·浦语2 1.8B对话模型,并让其创作故事
- 部署训练营一期的优秀作品八戒-Chat-1.8B,并与其交互
- 部署智能体Lagent Demo并让其做数据分析题
- 部署灵笔XComposer2 ,并让其做图文创建和图片分析
环境准备阶段
在studio上创建开发机,其中选择镜像cuda11.7-conda,先选择0.1卡
建议,可以直接使用自己的ssh工具连接,方便操作。
实战1-部署InternLM2-Chat-1.8B
根据课程内容https://github.com/InternLM/Tutorial/blob/camp2/helloworld/hello_world.md 创建好conda虚拟环境后,启动命令行交互demo,让其穿着300个字的故事:
实战2-部署八戒-Chat-1.8B并交互
该实现使用tutorial中的下载模型的脚本下载一期的优秀作品;同时使用实战1的环境即可,暂不需要升级配置。
启动服务,将绑定6006端口,需要按照教程映射下本地端口到服务器的,就可以在本机访问服务器上的服务。
与应用进行交互,0.1卡生成比较慢,需要耐心等待。
实战3-部署Lagent
Lagent 是一个轻量级、开源的基于大语言模型的智能体(agent)框架,支持用户快速地将一个大语言模型转变为多种类型的智能体,并提供了一些典型工具为大语言模型赋能。
该实验需要升级配置,先要停止当前的开发机,然后进行升级配置
再根据教程下载github工程,并在原环境上安装相应包,然后启动:
启动后,复用实战2的端口映射可以直接访问,然后断开了,重新操作一次即可。
启动的时候,加载模型比较慢,需要耐心等待。
在左边插件下面选择“数据分析”,然后输入:
请解方程 2*X=1360 之中 X 的结果
智能体就会开始帮你解决问题了。
实战4-部署灵笔并让其创作
浦语·灵笔2 是基于 书生·浦语2 大语言模型研发的突破性的图文多模态大模型,具有非凡的图文写作和图像理解能力,在多种应用场景表现出色,总结起来其具有:
- 自由指令输入的图文写作能力: 浦语·灵笔2 可以理解自由形式的图文指令输入,包括大纲、文章细节要求、参考图片等,为用户打造图文并貌的专属文章。生成的文章文采斐然,图文相得益彰,提供沉浸式的阅读体验。
- 准确的图文问题解答能力:浦语·灵笔2 具有海量图文知识,可以准确的回复各种图文问答难题,在识别、感知、细节描述、视觉推理等能力上表现惊人。
- 杰出的综合能力: 浦语·灵笔2-7B 基于 书生·浦语2-7B 模型,在13项多模态评测中大幅领先同量级多模态模型,在其中6项评测中超过 GPT-4V 和 Gemini Pro。
在实验前,需要将配置升级成0.5卡。
图文创作
根据教程拉取github工程,安装相关组件,并从共享库中链接模型。
启动服务
启动后,依然运行在6006端口,可以使用之前的通道来直接访问
创作!
可以直接用demo的内容,也可以新命题创作。
创作过程:
创作结果:
还是让模型创作自己的命题比较考验TA:
根据《望庐山瀑布》写一篇200字左右的赏析文,并配图,配图请采用水墨画
ctrl-c,停止启动的服务,执行studio-smi确认显存释放
读图
服务启动,仍然绑定6006端口,使用前面的渠道直接访问
百度了一张小猫图来分析分析,分析结果比较简单,且有点失误,有待丰富。
原图:
图片理解结果:
再来挑战下:
仍需努力。
其他:使用命令和库下载hf上的模型和配置
使用 huggingface_hub python 包,下载 InternLM2-Chat-7B 的 config.json 文件到本地
使用 Hugging Face 官方提供的 huggingface-cli 命令行工具下载模型到指定路径:
结语
整个过程,建议直接使用0.5卡的,实验比较快一些。
通过这次实战,熟悉了studio平台的使用,熟悉了相应的工具,收获蛮大。