OLLAMA部署qwen:7b,与fastgpt集成

本文介绍了如何使用OLLAMA框架在Docker容器中部署和管理LLM,特别是如何安装OLLAMA,运行qwen:7b模型,并与fastgpt集成。内容包括OLLAMA的安装步骤,fastgpt的配置,以及在fastgpt中测试qwen:7b的详细过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ollama是什么?

Ollama 是一个强大的框架,设计用于在 Docker 容器中部署 LLM。Ollama 的主要功能是在 Docker 容器内部署和管理 LLM 的促进者,它使该过程变得非常简单。它帮助用户快速在本地运行大模型,通过简单的安装指令,可以让用户执行一条命令就在本地运行开源大型语言模型,例如 Llama 2。

安装

安装ollama

此处是在centos7.6,有一张古老的GTX 1180Ti 11G的显卡,配置和驱动如下:
在这里插入图片描述

下载并安装

使用root或者有sudo权限的用户
curl -fsSL https://ollama.com/install.sh | sh
安装好后,执行:service ollama stop 停止服务。

默认是绑定在127.0.0.1的IP,若需要绑定到指定IP,那么采用如下:
export OLLAMA_HOST=xx.xx.xx.71:11434 //这样会启动在指定IP上
ollama serve & //注意,不要用service ollama start来启动,这样环境变量不生效

运行qwen:7b

ollama run qwen:7b
注:第一次运行会下载模型,这个模型有4G多。
成功后,会直接进入命令行的对话交互界面:
在这里插入图片描述
这时候可以使用 /bye 退出。

配置fastgpt

这里使用的是4.6.8的版本,这里是从github上拉了分支,直接部署在操作系统上的,如果是docker安装,那么请修改对应映射出来的config.local.json,然后重启fastgpt容器即可。

配置文件即FastGPT/projects/app/data目录下的config.local.json
注:本文章默认之前fastgpt都已经配置好了,这次只是新增一个qwen:7b的模型对接。

在这里插入图片描述

{
      "model": "qwen:7b",
      "name": "qwen:7b",
      "maxContext": 16000,
      "maxResponse": 4000,
      "quoteMaxToken": 13000,
      "maxTemperature": 1.2,
      "inputPrice": 0,
      "outputPrice": 0,
      "censor": false,
      "vision": false,
      "datasetProcess": false,
      "toolChoice": true,
      "functionCall": false,
      "customCQPrompt": "",
      "customExtractPrompt": "",
      "defaultSystemChatPrompt": "",
      "defaultConfig": {}
    }

配置好后,重启fastgpt服务。

切换到应用目录
cd projects/app

开发模式运行
nvm use v18.17.1

pnpm dev &

配置one api

这里直接配置ollama启动服务的ip和端口,名称输入qwen:7b,模型直接自定义,密钥输入一个空格即可保存。
在这里插入图片描述
测试
在渠道清单中,点击刚才创建的渠道条目的“测试”按钮,如果配置没问题,那么测试可以通过。
在这里插入图片描述同时也可以在ollama服务的日志里面刷到:
在这里插入图片描述

在fastgpt中测试

创建一个应用,AI模型选择qwen:7b

在这里插入图片描述

进行对话

在这里插入图片描述

### 如何在 Windows 上部署 FastGPTOllama #### 使用 Docker 容器化环境准备 为了简化跨平台兼容性和依赖管理,在 Windows 上推荐使用 Docker 来部署 FastGPT 及其关联组件。确保已安装最新版本的 Docker Desktop 并启用 WSL 2 后端支持[^1]。 #### 下载并启动 FastGPT 访问 FastGPT 的官方 GitHub 页面获取最新的发布版镜像标签,通过命令行执行如下操作: ```bash docker pull fastgpt/fastgpt:<latest-tag> docker run -d --name=fastgpt -p 8000:8000 fastgpt/fastgpt:<latest-tag> ``` 这会拉取指定版本的 FastGPT 映像文件,并以后台守护进程的方式运行容器实例,同时映射主机端口以便外部访问。 #### 获取配置 Ollama 模型 qwen:7b 对于 Ollama 中特定的大规模预训练语言模型 qwen:7b 的集成工作,则需遵循以下流程: - 访问 Ollama 提供的服务页面下载对应架构下的二进制包; - 解压后按照说明文档完成基础设置; - 修改 FastGPT 配置使其能够调用本地加载好的 qwen:7b API 接口[^3]; 注意:由于部分工具可能不完全适配 Windows 命令提示符或 PowerShell,建议考虑借助 Git Bash 或者其他类 Unix Shell 工具来进行相关指令的操作。 #### 测试连接性及功能验证 当上述步骤完成后,打开浏览器输入 `http://localhost:8000` 即可进入 FastGPT 控制面板界面。此时应该能够在应用程序创建过程中看到可用的 AI 模型选项里包含了刚刚配置成功的 qwen:7b 实例[^2]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wengad

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值