I. 引言:Bokeh的魅力与动态交互图表的价值
想象一下,你正在展示一份数据分析报告,屏幕上不再是静态的图表,而是随着鼠标移动揭示更多信息,或者通过滑动条轻松切换不同时间段的数据。这就是Bokeh库为你带来的魅力——创建引人入胜的动态交互图表。这些图表不仅让数据故事生动起来,更便于受众深度探索数据,发现隐藏的模式与趋势。
II. 准备工作:安装Bokeh与基本导入
在开始这场“动态”之旅前,确保已安装Bokeh库。打开命令行,输入:
pip install bokeh
一切就绪后,在Python脚本中引入所需模块:
from bokeh.io import show, output_notebook
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource, HoverTool, Slider, CheckboxGroup, CustomJS
III. API 1:bokeh.plotting.figure()
- 创建绘图区域
就像画家需要画布,我们在Bokeh中使用figure()
函数创建一个空白的绘图区域。简单几行代码,一个宽高比为16:9的交互式图表跃然眼前:
p = figure(plot_width=800, plot_height=450, x_axis_type='datetime')
这里我们设置了图表宽度为800像素,高度为450像素,且x轴为日期时间类型。这个“画布”就是后续添加各种图形与交互元素的基础。