机器学习算法源码全解析(三)-范数规则化之核范数与规则项参数选择

本文介绍了核范数的概念,作为低秩约束的凸近似,用于矩阵填充、鲁棒PCA、背景建模和TILT等场景。核范数在推荐系统中用于矩阵填充,解决数据缺失问题。鲁棒PCA处理含有噪声的数据,分离低秩结构和稀疏噪声。背景建模利用低秩特性区分视频背景和前景。规则化参数λ的选取至关重要,平衡模型训练误差和约束项,影响模型泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

参见上一篇博文,我们聊到了L0,L1和L2范数,这篇我们絮叨絮叨下核范数和规则项参数选择。知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正。谢谢。

机器学习算法源码全解析(二)-范数规则化之L0、L1与L2范数

https://wenyusuran.blog.csdn.net/article/details/25868893 

 

 

三、核范数

       核范数||W||*是指矩阵奇异值的和,英文称呼叫Nuclear Norm。这个相对于上面火热的L1和L2来说,可能大家就会陌生点。那它是干嘛用的呢?霸气登场:约束Low-Rank(低秩)。OK,OK,那我们得知道Low-Rank是啥?用来干啥的?

       我们先来回忆下线性代数里面“秩”到底是啥?举个简单的例子吧:

       对上面的线性方

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值