MCMC采样和M-H采样

本文介绍了马尔科夫链的细致平稳条件,并探讨了解决该问题的MCMC采样和M-H采样方法。通过M-H采样的改进,解决了接受率过低的问题,使其在实际应用中更为可行。文章还提供了M-H采样的实例和采样值与目标分布的比较,展示了MCMC采样在蒙特卡罗模拟中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

   MCMC(一)蒙特卡罗方法

    MCMC(二)马尔科夫链

    MCMC(三)MCMC采样和M-H采样

    MCMC(四)Gibbs采样

 

    在MCMC(二)马尔科夫链中我们讲到给定一个概率平稳分布ππ, 很难直接找到对应的马尔科夫链状态转移矩阵PP。而只要解决这个问题,我们就可以找到一种通用的概率分布采样方法,进而用于蒙特卡罗模拟。本篇我们就讨论解决这个问题的办法:MCMC采样和它的易用版M-H采样。

1. 马尔科夫链的细致平稳条件

    在解决从平稳分布ππ, 找到对应的马尔科夫链状态转移矩阵PP之前,我们还需要先看看马尔科夫链的细致平稳条件。定义如下:

    如果非周期马尔科夫链的状态转移矩阵PP和概率分布π(x)π(x)对于所有的i,ji,j满足:

π(i)P(i,j)=

M-H(Metropolis-Hastings)采样是一种马尔可夫链蒙特卡洛(MCMC)算法,用于从复杂的概率分布中进行采样。与Gibbs采样类似,M-H采样也是一种基于马尔可夫链的迭代采样方法。 M-H采样的思想是通过接受-拒绝的方式,从一个简单的提议分布中采样得到样本,并根据接受概率决定是否接受这个样本。具体步骤如下: 1. 初始化初始样本。 2. 从提议分布中抽取一个候选样本。 3. 计算接受概率(Acceptance Probability): - 计算当前样本在目标分布下的概率密度值(目标概率密度)。 - 计算候选样本在目标分布下的概率密度值。 - 计算接受概率为两个概率密度的比例乘以候选样本被提议分布抽取的概率密度。 4. 生成一个[0,1]之间的随机数。 5. 如果随机数小于等于接受概率,则接受候选样本作为下一个样本;否则,保持当前样本不变。 6. 重复步骤2到步骤5,直到达到预定的迭代次数或满足收敛条件。 M-H采样中的提议分布通常是一个简单的分布,如高斯分布。接受概率的计算允许采样从低概率区域向高概率区域移动,从而得到符合目标分布的样本。 需要注意的是,M-H采样的性能与提议分布的选择密切相关。如果提议分布过于简单,可能导致采样效率低下;如果提议分布与目标分布差异较大,可能导致高拒绝率。因此,在实际应用中,选择合适的提议分布是一个关键问题。 总之,M-H采样是一种常用的MCMC算法,用于从复杂的概率分布中进行采样,尤其适用于无法直接从目标分布中采样的情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值