看涨期权计算函数实现(Python)

本文介绍了一种使用布莱克-斯科尔斯-莫顿(Black-Scholes-Merton)模型来计算欧式看涨期权在授予日公允价值的方法。该模型考虑了股票市价、行权价、年化波动率、连续复利的无风险年收益率及期权剩余到期时间等关键参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

def call_BSM():
    '''运用布莱克-斯科尔斯-莫顿定价模型计算期权在授予日的公允价值
    S:股票在授予日的市价;
    K:股票期权的行权价;
    sigma:股票收益率的年化波动率;
    r:连续复利的无风险年收益率;
    T:股票期权的剩余到期时间(按年算)'''
    import numpy as np
    import scipy
    from scipy.stats import norm
    r1 = float(input("请输入无风险年收益率r:"))
    r=np.log(1+r1)
    print("无风险年收益率转化为连续复利的无风险年收益率为:",r)
    S = float(input("请输入股票在期权授予当日的市价S:"))
    K = float(input("请输入股票期权的执行价格K:"))
    sigma = float(input("请输入股票收益率的年化波动率sigma:"))
    T = float(input("请输入股票的剩余到期时间T:"))
    d1=(np.log(S/K)+(r+pow(sigma,2)/2)*T)/(sigma*np.sqrt(T))
    d2=d1-sigma*np.sqrt(T)
    print("欧式看涨期权的价格为:",S*norm.cdf(d1)-K*np.exp(-r*T)*norm.cdf(d2))
option_price = call_BSM()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值