论文翻译:ACL Finding-2024.Data Contamination Calibration for Black-box LLMs

Data Contamination Calibration for Black-box LLMs
https://arxiv.org/abs/2405.11930

论文提出了一种名为Polarized Augment Calibration (PAC)的新方法,用于检测LLMs中的数据污染问题,这也是一种通过交换样本中元素(如单词或句子)的位置来生成相邻样本,并计算原始样本与这些相邻样本之间的极化距离,从而判断样本是否为训练数据集中的成员。这种方法不需要改变题目或选项的顺序,而是通过局部的元素交换来检测数据污染,具有更广泛的适用性和较低的计算成本。

黑盒大型语言模型的数据污染校准

摘要

大型语言模型(LLMs)的快速发展与训练数据规模的扩大密切相关。然而,未经检查的超大规模训练集引入了一系列潜在风险,如数据污染,即基准测试数据被用于训练。在这项工作中,我们提出了一种名为极化增强校准(PAC)的整体方法,以及一个名为StackMIA的全新数据集,以帮助检测污染数据并减少污染影响。PAC扩展了机器学习社区流行的MIA(成员推断攻击)——通过形

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSPhD-winston-杨帆

给我饭钱

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值