rag 需求产生的背景介绍:
在使用大模型时,一个常见的问题是模型会产生幻觉(即生成的内容与事实不符),同时由于缺乏企业内部数据的支持,导致其回答往往不够精准和具体,偏向于泛泛而谈。这些问题限制了大模型直接应用于特定业务场景的效果。通过引入RAG (Retrieval-Augmented Generation)机制,可以结合外部知识库或私有数据源来提高生成内容的准确性和相关性,有效缓解上述问题。
基于spring ai来做rag的优势介绍
我们使用了Spring AI来做检索增强,因为过去用Java写AI应用时面临的主要困境是没有标准的封装。现在Spring推出了Spring AI,它提供了一套可以兼容市面上主要生成任务的接口,极大地方便了开发工作。Spring AI不仅支持阿里云的通义大模型等服务,还能够通过简单的配置切换不同的AI提供商,使得开发者可以更加专注于业务逻辑而无需过多关注底层实现细节。这种标准化和模块化的设计,让Spring AI成为了构建AI应用程序的理想选择。
Spring AI alibaba介绍
Spring AI Alibaba 是一个针对 Spring AI 的实现,基于阿里云百炼系列云产品提供大模型接入。它主要支持包括对话、文生图、文生语音等在内的多种生成式AI功能,并且能够兼容市面上大部分基于流的机器人模型。通过使用 Spring AI Alibaba,开发者可以轻松地将这些强大的AI能力集成到自己的Java应用程序中。其核心优势在于提供了统一且标准化的接口来访问不同的AI服务提供商(如OpenAI、Azure和阿里云),从而减少了因切换不同服务商而带来的开发工作量。此外,Spring AI Alibaba 还支持通过简单的配置即可调整使用的具体模型,比如用于绘画或图像生成的通义万象模型,极大简化了AI应用开发流程。
检索增强的后端代码编写
为了通过检索增强的方式读取一个阿里巴巴的财务报表PDF,并对外提供服务,基于提供的知识内容,首先需要理解RAG(检索增强生成)的基本概念和技术实现。这里采用的是阿里云百炼平台与Spring AI Alibaba集成的技术栈来完成这个需求。下面将详细介绍具体的配置和代码实现步骤。
一、环境准备
- 确保JDK版本:必须使用JDK 17或更高版本。
- Spring Boot版本:项目应基于Spring Boot 3.3.x 版本。
- 获取API Key:访问阿里云百炼页面,按照指引开通“百炼大模型推理”服务后创建并保存好API key。
- 设置环境变量:在你的开发环境中设置
AI_DASHSCOPE_API_KEY
为刚才获得的API key值。 - 项目依赖配置:
- 添加额外的Maven仓库以支持spring ai alibaba starter 的引入。
- 在pom.xml中加入spring ai alibaba starter以及指定Spring Boot的父级项目。
<repositories>
<repository>
<id>sonatype-snapshots</id>
<url>https://oss.sonatype.org/content/repositories/snapshots</url>
<snapshots>
<enabled>true</enabled>
</snapshots>
</repository>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
<repository>
<id>spring-snapshots