智能体(Agent):从原理到实践_part1_工具调用

智能体是什么?

智能体(agent)是指基于大语言模型(LLM)构建的系统,扮演着“大脑”的角色,具备观察、思考、行动和记忆的能力。在java spring 环境中,智能体能够自动监控应用的状态,分析性能数据,并根据预设规则或学习到的经验做出决策,如自动扩展资源以应对流量高峰,或是优化配置减少延迟。通过不断的学习与积累经验,智能体还能持续改进其行为模式,提高系统的稳定性和效率。

智能体的关键组成流程与工具

智能体的关键流程包括信息输入和观察、思考与计划、使用工具的行动以及长短期外部记忆。

首先,通过传感器或其他方式收集环境数据,实现对周围世界的感知;

接着,基于获取的信息进行分析判断,制定行动策略或计划;

然后,根据计划利用特定工具执行具体任务,如移动物体或处理数据等;

最后,将经历的重要事件及学习到的知识存储于长短期记忆中,以便未来决策时参考。

这一系列步骤使得智能体能够适应复杂多变的环境,并不断优化其行为模式。

智能体组件 -  工具调用(function call)能做什么

在智能应用中,工具(Tool)或功能调用(Function Calling)的作用就如同人通过使用望远镜看的更远、通过驾驶汽车跑得更快一样,极大地扩展了大模型的能力边界。具体到 Spring AI 环境中,当大型语言模型遇到它自身无法直接处理的问题时,比如需要执行具体的数学运算或者查询特定消息的状态时,可以通过预定义的“工具”来完成这些任务。

以查询消息状态为例,在应用程序中定义并注册了一个名为messageStatusFunction的功能,这个功能可以理解为一种特殊的“工具”,用于查询指定ID的消息状态。当用户向系统询问某条消息的状态时,大模型并不直接去数据库查找信息,而是识别出此时需要调用已注册的messageStatusFunction。随后,该函数被激活执行,并将查询结果反馈给大模型,最终由大模型整合这一信息后形成最终回答传递给用户。

这样的机制不仅让智能应用能够利用外部资源增强其解决问题的能力,还使得复杂的逻辑操作得以简化,增强了系统的灵活性与响应速度。就像我们借助电灯开关控制室内照明一样自然流畅,通过适当的接口封装,可以使大模型更加高效地与物理世界交互,执行具体任务。

函数function call是怎么运作的?

在Spring AI中,函数调用(Function Calling)通过定义Java函数接口,并使用特定注解来描述函数的输入参数、输出结果及其功能实现。开发者首先需要创建一个实现了java.util.function.Function接口的类,并在这个类的方法上添加@JsonProperty@JsonPropertyDescription注解,这些注解帮助大模型理解该函数的目的及其所需参数详情。接下来,在配置类中注册这个函数时,通过@Bean注解并指定一个清晰的功能描述以及唯一的函数名,使得Spring AI能够识别并将此函数信息转换为文本形式提供给大模型。

当用户与系统交互过程中,如果大模型判断为了完成任务需要调用某个特定函数,它会向Spring AI发出

### a_bogus算法解析 #### 算法概述 a_bogus算法是一种用于处理特定输入并生成相应输出的复杂逻辑流程。该算法主要针对乱码字符串`garbledString`进行操作,通过综合考虑时间戳、User-Agent头信息以及其他请求参数来构建最终的结果[^1]。 #### 关键数据结构 为了实现这一目标,此算法依赖于两个核心的数据结构——一个长度为4的数组与另一个拥有29个元素的一维表。这些数组在运算期间扮演着至关重要的角色,它们存储中间状态的信息以便后续步骤能够基于先前计算得出更精确的答案。 #### 函数调用链路分析 通过对在线环境中的行为模式进行深入研究发现,整个过程涉及到了一系列精心设计的方法调用。尽管具体的内部机制较为隐蔽,但是借助反复的日志记录和插桩技术仍然有可能逐步揭开其神秘面纱。值得注意的是,这种逆向工程并非易事,它不仅考验参与者的技术实力也挑战耐心。 #### 新旧版本对比 最新版的新a_bogus算法保留了原有框架的基础上进行了扩展优化,在保持兼容性的前提下引入了一些新的特性。具体来说,新版本被划分为两大部分:前半部分延续自早期的设计思路;而后端则包含了改进后的组件和技术栈升级[^2]。 ```python def old_ab_part(garbled_string, timestamp, user_agent): # 假设这是原始AB算法的一部分功能实现 pass def new_features(): # 此处代表新增加的功能模块 pass def full_algorithm(input_data): result_from_old = old_ab_part(*input_data[:3]) enhanced_output = new_features() final_result = combine_results(result_from_old, enhanced_output) return final_result ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值