二阶系统的迹-行列式平面方法(trace-determinant methods for 2nd order system)

让我们再次考虑二阶线性系统
d Y d t = A Y \frac{d\mathbf{Y}}{dt}=A\mathbf{Y} dtdY=AY

我们已经知道,分析这种二阶系统。最主要的是注意它的特征值情形。
在这里插入图片描述
(此处没有重根的情形,所有是partial)

而特征值,也就是系统矩阵特征方程的根,和而系统矩阵是直接相关的。
我们知道,在线性代数理论中,矩阵A的迹Trace(A)(简称Tr)是A的各个特征值之和,而矩阵A的行列式determinant(A)(简称det)为特征值的积。
这里我们只考虑二阶系统。

1. 利用矩阵的迹-行列式求特征值

因此若A的特征值为 λ 1 , λ 2 \lambda_1, \lambda_2 λ1,λ2 则有
λ 1 + λ 2 = T r ( A ) λ 1 ∗ λ 2 = d e t ( A ) \lambda_1 + \lambda_2= Tr(A)\\ \lambda_1 * \lambda_2=det(A) λ1+λ2=Tr(A)λ1λ2=det(A)
上过初中的朋友,如果考虑到特征值就是系统矩阵特征方程的根,会不会让你回忆起韦达定理: 对于方程 a λ 2 + b λ + c = 0 a \lambda^2+b\lambda+c=0 aλ2++c=0:
λ 1 + λ 2 = − b a λ 1 ∗ λ 2 = c a \lambda_1 + \lambda_2= -\frac{b}{a}\\ \lambda_1 * \lambda_2=\frac{c}{a} λ1+λ2=abλ1λ2=ac
利用 T r ( A ) 和 d e t ( A ) 和 a , b , c Tr(A)和det(A)和a, b, c Tr(A)det(A)a,b,c的关系, 再根据二次方程求根公式, 有
λ 1 , 2 = T r ± T r 2 − 4 ∗ d e t 2 \lambda_{1,2} = \frac{Tr±\sqrt{Tr^2-4*det}}{2} λ1,2=2Tr±Tr24det
A被省略掉了
因此, 我们利用矩阵A的迹-行列式, 直接求系统特征值, 进而判断系统解的形态, 而不必列出特征方程, 这是一个比较巧妙的方法.
下面, 我们介绍一个必杀技, 如何一眼秒杀解的形态.

2. 利用矩阵的迹-行列式直接分析系统解的形态

在这里插入图片描述T代表trace,D代表行列式.
这个图你一看1应该有点感觉了,下面我来讲一下这个图.
回顾上面的公式
λ 1 , 2 = T ± T 2 − 4 ∗ D 2 \lambda_{1,2} = \frac{T±\sqrt{T^2-4*D}}{2} λ1,2=2T±T24D

2.1 两个不同实根 T 2 − 4 ∗ D > 0 T^2-4*D>0 T24D>0

我们看到 T 2 − 4 ∗ D > 0 T^2-4*D>0 T24D>0的情况,也就像下面图的红色区域,代表系统有两个不一样的实特征值
在这里插入图片描述由于
λ 1 + λ 2 = T λ 1 ∗ λ 2 = D \lambda_1 + \lambda_2= T\\ \lambda_1 * \lambda_2=D λ1+λ2=Tλ1λ2=D
因此当 T < 0 , D > 0 T<0, D>0 T<0,D>0,代表系统两个负特征值,此时平衡点为sink
T < 0 , D < 0 T<0, D<0 T<0,D<0,代表系统两个特征值一正一负,此时平衡点为saddle
T < 0 , D = 0 T<0, D=0 T<0,D=0,代表系统两个特征值一个负一个0,此时平衡点为node, 系统只有一个直线解, 相图的形状大概长这样
在这里插入图片描述负特征值对应的一个特征空间 0特征值对应另外一个特征空间
这两个特征空间的直和构成整个相平面
如果系统的初始状态落在负特征值对应的特征空间上,则会沿着特征向量的方向趋近于原点/平衡点
如果系统的初始状态落在0特征值对应的特征空间上,它就不动了,换言之, 0特征值对应的特征空间构成了系统的一个不变集,每个点都是平衡点(学过非线性系统的同学们!)

如果初始状态落在其他地方,由于线性代数告诉我们,初始状态可以在两个分量上投影,对应负特征值方向的分量会收敛为0, 而对应0特征值方向的分量则不动了。

T > 0 T>0 T>0的情况也可以类似的推出来

2.2 一对纯虚根 T 2 − 4 ∗ D < 0 T^2-4*D<0 T24D<0

在这里插入图片描述这个就不用多说了吧
由于两个根实部相同
T > 0 T>0 T>0必定是不稳定的spiral source
T < 0 T<0 T<0必定是稳定的spiral sink
T = 0 T=0 T=0则是无阻尼振荡的螺旋center

2.3 最抽象的情况 重根 T 2 − 4 ∗ D = 0 T^2-4*D=0 T24D=0

这在迹-行列式平面中表现为一条二次曲线
在这里插入图片描述显然, T > 0 T>0 T>0必定是不稳定的node
T < 0 T<0 T<0必定是稳定的node
T = 0 T=0 T=0就是原点,啥也没有

综上所述,你学会trace-determinant method了吗?

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值