一、绪论——1.2 误差的来源和分类

本文深入探讨了数值计算中误差的概念,详细介绍了模型误差、观测误差、截断误差和舍入误差四种主要误差类型,以及绝对误差和相对误差的定义与计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

误差的来源和分类

误差是描述数值计算之中近似值的近似程度
误差按来源可分为:模型误差、观测误差、截断误差、舍入误差
1.模型误差:数学模型通常是由实际问题抽象得到的,一般带有误差,这种误差称为模型误差。(这个误差一般来说是不可避免的)

2.观测误差:数学模型中的一些参数时通过观测和实验得到的,难免带有误差,这种误差称为观测误差。

注: 以上两种误差并不是数值分析的重点研究内容,因为不可避免。下面说的两种误差是数值分析需要关注和研究的。

3.截断误差: 例如进行taylor展开, l n 2 ≈ 1 − 1 2 + 1 3 − 1 4 + 1 5 ln2 \approx 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5} ln2121+3141+51,只取了前5项。这里舍去后面所产生的误差R5被称为截断误差。

4.舍入误差:由于计算机只能对有限位数进行运算,在运算中像 e , 2 , 1 3 e,\sqrt{2},\frac{1}{3} e,2 ,31等都要按舍入原则保留有限位,这时产生的误差称为舍入误差或计算误差。

绝对误差和相对误差

绝对误差
  • 设 x 是精确值 x*的一个近似值,记:
    e = x ∗ − x e=x^*-x e=xx
    称 e 为近似值 x 的绝对误差,简称误差。
  • 如果 ε \varepsilon ε满足:
    ∣ e ∣ ≤ ε \vert e \vert \leq \varepsilon eε
    则称 ε \varepsilon ε为近似值 x 的绝对误差限,简称误差限。
    注1:(1)绝对误差是一个可正可负的量,且是有量纲的。(2)绝对误差是无法精确算出来的。
    注2:精确值 x ∗ x^* x,近似值 x x x,和误差限 ε \varepsilon ε之间满足:
    x − ε ≤ x ∗ ≤ x + ε x-\varepsilon \leq x^* \leq x+\varepsilon xεxx+ε
    通常记为: x ∗ = x ± ε x^*=x\pm \varepsilon x=x±ε
相对误差

相对误差:
e r = e x ∗ = x ∗ − x x ∗ e_r = \frac{e}{x^*}=\frac{x^*-x}{x^*} er=xe=xxx
由于 x ∗ x^* x未知,实际使用时常将 x 的相对误差取为:
e r = e x = x ∗ − x x e_r = \frac{e}{x}=\frac{x^*-x}{x} er=xe=xxx
ε r = ε ∣ x ∣ \varepsilon_r=\frac{\varepsilon}{\vert x\vert} εr=xε称为近似值x的相对误差限
∣ e r ∣ ≤ ε r \vert e_r \vert \leq \varepsilon_r erεr(相对误差小于等于相对误差限)
注:相对误差可正可负,但没有量纲。

例子:
设1.24是由精确值 x ∗ x^* x经过四舍五入得到的近似值,求x的绝对误差限和相对误差限。
解:
由题意得: 1.235 ≤ x ∗ ≤ 1.245 1.235\leq x^* \leq 1.245 1.235x1.245
所以:绝对误差限 ε = 0.005 \varepsilon=0.005 ε=0.005,相对误差限 ε r = 0.005 / 1.24 ≈ 0.004 \varepsilon_r=0.005/1.24\approx 0.004 εr=0.005/1.240.004


参考资料:https://www.icourse163.org/course/NEU-1002089009

以下是基于你的需求设计的本科论文大纲,共分为四章。论文题目为《基于神经网络的短时客流量预测模型——以郑州市三号线二七广场站为例》,且仅使用 LSTM 模型,同时区分工作日周末的客流量预测。 --- ## **第绪论** ### 1.1 研究背景与意义 - **城市轨道交通的重要性**: - 介绍城市轨道交通在现代城市交通中的作用。 - 强调客流量预测对地铁运营调度、资源分配乘客体验的重要性。 - **研究意义**: - 以郑州市三号线二七广场站为例,研究短时客流量预测的实际应用价值。 - 区分工作日周末的客流量模式,为地铁运营提供精准数据支持。 ### 1.2 国内外研究现状 - **传统方法**: - 介绍 ARIMA、SVR 等传统时序预测方法。 - 分析其优缺点(如难以捕捉非线性关系)。 - **深度学习方法**: - 介绍 CNN、RNN、GRU 等深度学习模型在客流量预测中的应用。 - 强调 LSTM 在处理时序数据中的优势。 - **研究空白**: - 指出现有研究较少区分工作日周末的客流量模式。 ### 1.3 研究目标与内容 - **研究目标**: - 基于 LSTM 构建短时客流量预测模型,区分工作日周末。 - 以二七广场站为例,验证模型的有效性。 - **研究内容**: - 数据预处理与特征提取。 - LSTM 模型的构建与训练。 - 模型性能评估与结果分析。 ### 1.4 论文结构安排 - 简要介绍论文的章节安排。 --- ## **第二章 数据与方法** ### 2.1 数据来源与描述 - **数据来源**: - 郑州地铁运营公司提供的二七广场站客流量数据。 - 外部数据(如天气、节假日信息)。 - **数据描述**: - 时间范围:2025 年 11 日至 125 日。 - 数据粒度:每 15 分钟的客流量。 - 数据字段:时间戳、进站客流量、出站客流量、日期类型(工作日/周末)。 ### 2.2 数据预处理 - **数据清洗**: - 处理缺失值(如插值法)。 - 处理异常值(如基于统计方法识别并修正)。 - **数据归化**: - 使用 Min-Max 归化将客流量数据缩放到 [0, 1] 范围。 - **数据集划分**: - 按工作日周末分别划分训练集(80%)测试集(20%)。 ### 2.3 LSTM 模型 - **LSTM 的基本原理**: - 介绍 LSTM 的结构(输入门、遗忘门、输出门)。 - 说明 LSTM 如何捕捉时序数据中的长期依赖关系。 - **模型设计**: - 输入数据格式:(时间步长 × 特征数),如 (16, 1)。 - 模型结构:两层 LSTM 层 + 层全连接层。 - 损失函数:均方误差(MSE)。 - 优化器:Adam。 --- ## **第三章 实验与结果分析** ### 3.1 实验环境 - **硬件环境**: - CPU:Intel Core i7-12700K。 - GPU:NVIDIA GeForce RTX 3080。 - 内存:32GB DDR4。 - **软件环境**: - 操作系统:Windows 11。 - 开发工具:Python 3.8、TensorFlow 2.9、Keras 2.9。 ### 3.2 模型训练 - **训练参数**: - batch_size=32,epochs=50。 - **防止过拟合**: - 早停法(Early Stopping)。 - Dropout。 ### 3.3 评价指标 - **RMSE**(均方根误差)。 - **MAE**(平均绝对误差)。 - **MAPE**(平均绝对百分比误差)。 ### 3.4 实验结果 - **工作日预测结果**: - 训练损失验证损失曲线。 - 真实值与预测值的对比图。 - 评价指标的具体数值(如 RMSE=50.2,MAE=40.1)。 - **周末预测结果**: - 训练损失验证损失曲线。 - 真实值与预测值的对比图。 - 评价指标的具体数值(如 RMSE=45.3,MAE=35.8)。 ### 3.5 结果分析 - **工作日与周末的客流量模式对比**: - 分析工作日周末的客流量分布差异。 - **模型性能分析**: - 讨论 LSTM 模型在工作日周末的预测精度。 - **实际应用价值**: - 说明模型对地铁运营调度的实际意义。 --- ## **第四章 总结与展望** ### 4.1 研究总结 - **研究成果**: - LSTM 模型在二七广场站短时客流量预测任务中表现良好。 - 模型能够有效捕捉工作日周末的客流量变化趋势。 - **实际意义**: - 为地铁运营调度提供数据支持。 - 为其他城市的轨道交通客流量预测提供参考。 ### 4.2 研究局限性 - **模型局限性**: - 对超参数敏感,需要仔细调优。 - 训练时间较长,计算资源需求较高。 ### 4.3 未来工作 - **改进方向**: - 尝试结合其他模型(如 CNN-LSTM)。 - 引入外部数据(如天气、节假日)以提升预测精度。 - 探索更高效的训练方法(如迁移学习)。 --- ## **参考文献** - 引用相关的经典文献研究论文,包括: - LSTM 的原始论文(Hochreiter & Schmidhuber, 1997)。 - 客流量预测的相关研究。 - 深度学习在交通领域的应用。 --- ## **附录(可选)** - **数据集描述**:提供二七广场站客流量数据的具体描述。 - **模型参数**:提供 LSTM 模型的详细参数设置。 - **代码获取**:提供代码的 GitHub 链接。 --- ### 大纲特点 1. **聚焦二七广场站**:以二七广场站为例,增强研究的针对性实际意义。 2. **区分工作日周末**:在数据预处理、实验设计结果分析中,明确区分工作日周末的客流量模式。 3. **结构清晰**:四章内容分别涵盖研究背景、方法、实验总结,逻辑清晰。 4. **实用性强**:结合实际案例,为地铁运营调度提供数据支持。 细说4.1
最新发布
03-08
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值