误差的来源和分类
误差是描述数值计算之中近似值的近似程度
误差按来源可分为:模型误差、观测误差、截断误差、舍入误差
1.模型误差:数学模型通常是由实际问题抽象得到的,一般带有误差,这种误差称为模型误差。(这个误差一般来说是不可避免的)
2.观测误差:数学模型中的一些参数时通过观测和实验得到的,难免带有误差,这种误差称为观测误差。
注: 以上两种误差并不是数值分析的重点研究内容,因为不可避免。下面说的两种误差是数值分析需要关注和研究的。
3.截断误差: 例如进行taylor展开, l n 2 ≈ 1 − 1 2 + 1 3 − 1 4 + 1 5 ln2 \approx 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5} ln2≈1−21+31−41+51,只取了前5项。这里舍去后面所产生的误差R5被称为截断误差。
4.舍入误差:由于计算机只能对有限位数进行运算,在运算中像 e , 2 , 1 3 e,\sqrt{2},\frac{1}{3} e,2,31等都要按舍入原则保留有限位,这时产生的误差称为舍入误差或计算误差。
绝对误差和相对误差
绝对误差
- 设 x 是精确值 x*的一个近似值,记:
e = x ∗ − x e=x^*-x e=x∗−x
称 e 为近似值 x 的绝对误差,简称误差。 - 如果
ε
\varepsilon
ε满足:
∣ e ∣ ≤ ε \vert e \vert \leq \varepsilon ∣e∣≤ε
则称 ε \varepsilon ε为近似值 x 的绝对误差限,简称误差限。
注1:(1)绝对误差是一个可正可负的量,且是有量纲的。(2)绝对误差是无法精确算出来的。
注2:精确值 x ∗ x^* x∗,近似值 x x x,和误差限 ε \varepsilon ε之间满足:
x − ε ≤ x ∗ ≤ x + ε x-\varepsilon \leq x^* \leq x+\varepsilon x−ε≤x∗≤x+ε
通常记为: x ∗ = x ± ε x^*=x\pm \varepsilon x∗=x±ε
相对误差
相对误差:
e
r
=
e
x
∗
=
x
∗
−
x
x
∗
e_r = \frac{e}{x^*}=\frac{x^*-x}{x^*}
er=x∗e=x∗x∗−x
由于
x
∗
x^*
x∗未知,实际使用时常将 x 的相对误差取为:
e
r
=
e
x
=
x
∗
−
x
x
e_r = \frac{e}{x}=\frac{x^*-x}{x}
er=xe=xx∗−x
ε
r
=
ε
∣
x
∣
\varepsilon_r=\frac{\varepsilon}{\vert x\vert}
εr=∣x∣ε称为近似值x的相对误差限。
∣
e
r
∣
≤
ε
r
\vert e_r \vert \leq \varepsilon_r
∣er∣≤εr(相对误差小于等于相对误差限)
注:相对误差可正可负,但没有量纲。
例子:
设1.24是由精确值
x
∗
x^*
x∗经过四舍五入得到的近似值,求x的绝对误差限和相对误差限。
解:
由题意得:
1.235
≤
x
∗
≤
1.245
1.235\leq x^* \leq 1.245
1.235≤x∗≤1.245
所以:绝对误差限
ε
=
0.005
\varepsilon=0.005
ε=0.005,相对误差限
ε
r
=
0.005
/
1.24
≈
0.004
\varepsilon_r=0.005/1.24\approx 0.004
εr=0.005/1.24≈0.004