似然比检验LR:
a=有约束似然值/无约束似然值,a越接近1,说明所得模型是满足约束条件的。
LR=-2ln(a)服从卡方分布
eg:library(nlme);
data(Orthodont);
##test for Sex:Age interaction and Subject-Intercept
mA<-lme(distance ~ Sex * I(age - 11), random = ~ 1| Subject, data = Orthodont, method = "ML")
m0<-lm(distance ~ Sex + I(age - 11), data = Orthodont)
summary(mA)
summary(m0)
Wald检验
如果约束是有效的,那么在没有约束情况下估计出来的估计量应该渐进地满足约束条件,因为MLE是一致的。
以无约束估计量为基础可以构造一个Wald统计量,这个统计量也服从卡方分布。
Wald检验实际基于g(β )和C之间的距离。
Wald只需要估计无约束模型,但需要计算渐进协方差矩阵。
拉格朗日乘子检验(LM)或得分检验
检验思想:在约束条件下,可以用拉格朗日方法构造目标函数。如果约束有效,则最大化拉格朗日函数所得估计量应位于最大化无约束所得参数估计值附近。
原假设为拉格朗日乘子为0。越偏离0,说明有约束跟无约束的差别较大,则对给出的约束条件,原模型不能满足,即约束条件越无效。