免费送书 | 全面介绍RAG应用---《基于大模型的RAG应用开发与优化》!

来了来了,最近很久没弄到新的大模型书籍了,今天给大家推荐这本—《基于大模型的RAG应用开发与优化——构建企业级LLM应用》(送PDF)

在这里插入图片描述

内容简介

《基于大模型的RAG应用开发与优化——构建企业级LLM应用》是一本全面介绍基于大语言模型的RAG应用开发的专业图书。

本书共分为3篇:预备篇、基础篇和高级篇。预备篇旨在帮助你建立起对大模型与RAG的基本认识,并引导你搭建起RAG应用开发的基础环境;基础篇聚焦于经典RAG应用开发的核心要素与阶段,介绍关键模块的开发过程,剖析相关的技术原理,为后面的深入学习打下坚实的基础;高级篇聚焦于RAG应用开发的高阶模块与技巧,特别是在企业级RAG应用开发中的优化策略与技术实现,并探索了一些新型的RAG工作流与范式,旨在帮助你了解最新的RAG应用技术发展,掌握RAG应用的全方位开发能力。

基于大模型的RAG应用开发与优化——构建企业级LLM应用》适合对大模型及RAG技术感兴趣的开发者、研究人员、产品经理及希望了解并掌握RAG应用开发能力的人阅读。无论你是进入AI领域的初学者,还是已经有一定基础的进阶者,都能从本书中找到适合自己的内容。

😝有需要这本书的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:这本《基于大模型的RAG应用开发与优化——构建企业级LLM应用》PDF免费分享]

作者简介

严灿平

毕业于南京理工大学计算机系,南京大学工商管理硕士。先后就职于联创(后与亚信科技合并)担任软件工程师与设计师,甲骨文中国(Oracle)担任中国区企业架构部首席架构师,上海慧问信息科技有限公司担任合伙人兼技术总监。现为独立IT咨询顾问,公众号“AI大模型应用实践”主理人。拥有超过20年的企业软件从业经验,专注于企业软件架构设计、互联网时代传统行业的IT转型、人工智能与大数据技术在企业应用的创新等。

曾担任多项大型企业级软件系统核心架构师与咨询师,参与包括中国移动、中国电信等通信行业客户的核心业务运营支撑系统建设、智慧城市与政务行业互联网转型的IT咨询与规划。精通多种计算机软件开发技术与IT架构方法论,对移动互联网、大数据、人工智能在企业领域应用有深入的研究与实施经验。

目录

预 备 篇

第1章 了解大模型与RAG 3

1.1 初识大模型 3
1.2 了解RAG 11
1.3 RAG应用的技术架构 14
1.4 关于RAG的两个话题 20

第2章 RAG应用开发环境搭建 27

2.1 开发RAG应用的两种方式 27
2.2 RAG应用开发环境准备 33
2.3 关于本书开发环境的约定 51
【预备篇小结】 52

基 础 篇

第3章 初识RAG应用开发 55

3.1 开发一个最简单的RAG应用 55
3.2 如何跟踪与调试RAG应用 70
3.3 准备:基于LlamaIndex框架的RAG应用开发核心组件 77

第4章 模型与Prompt 78

4.1 大模型 78
4.2 Prompt 87
4.3 嵌入模型 92

第5章 数据加载与分割 100

5.1 理解两个概念:Document与Node 100
5.2 数据加载 116
5.3 数据分割 129
5.4 数据摄取管道 145
5.5 完整认识数据加载阶段 155

第6章 数据嵌入与索引 156

6.1 理解嵌入与向量 156
6.2 向量存储 158
6.3 向量存储索引 164
6.4 更多索引类型 175

第7章 检索、响应生成与RAG引擎 190

7.1 检索器 191
7.2 响应生成器 199
7.3 RAG引擎:查询引擎 214
7.4 RAG引擎:对话引擎 221
7.5 结构化输出 239
【基础篇小结】 243

高 级 篇

第8章 RAG引擎高级开发 247

8.1 检索前查询转换 247
8.2 检索后处理器 259
8.3 语义路由 272
8.4 SQL查询引擎 280
8.5 多模态文档处理 286
8.6 查询管道:编排基于Graph的RAG工作流 308

第9章 开发Data Agent 321

9.1 初步认识Data Agent 322
9.2 构造与使用Agent的工具 323
9.3 基于函数调用功能直接开发Agent 331
9.4 用框架组件开发Agent 335
9.5 更细粒度地控制Agent的运行 343

第10章 评估RAG应用 349

10.1 为什么RAG应用需要评估 349
10.2 RAG应用的评估依据与指标 350
10.3 RAG应用的评估流程与方法 351
10.4 评估检索质量 352
10.5 评估响应质量 356
10.6 基于自定义标准的评估 362

第11章 企业级RAG应用的常见优化策略 364

11.1 选择合适的知识块大小 364
11.2 分离检索阶段的知识块与生成阶段的知识块 369
11.3 优化对大文档集知识库的检索 378
11.4 使用高级检索方法 397

第12章 构建端到端的企业级RAG应用 429

12.1 对生产型RAG应用的主要考量 429
12.2 端到端的企业级RAG应用架构 430
12.3 端到端的全栈RAG应用案例 436

第13章 新型RAG范式原理与实现 478

13.1 自纠错RAG:C-RAG 478

13.2 自省式RAG:Self-RAG 485

13.3 检索树RAG:RAPTOR 507

【高级篇小结】 514

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

😝有需要这本书的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:这本《基于大模型的RAG应用开发与优化——构建企业级LLM应用》PDF免费分享]

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料。包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程扫描领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
在这里插入图片描述

在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程扫描领取哈)
在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程扫描领取哈)
在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程扫描领取哈)
在这里插入图片描述
在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程扫描领取哈)
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

<think>好的,用户想了解text-embedding-3-large是什么,我需要详细解释清楚。首先,我应该确定这个模型的来源,是OpenAI开发的。然后,说明它是文本嵌入模型,用于将文本转化为高维向量。接下来,要讲它的特点,比如支持不同维度的输出,可能提到了3072维和1024维两种选项。需要解释嵌入向量的应用场景,比如搜索、聚类、分类等。 还要提到它的优势,比如性能提升,可能比之前的版本如text-embedding-ada-002更好。可能需要比较不同维度对准确性和计算效率的影响。另外,用户可能关心如何使用这个模型,是否需要API调用,或者是否开源。不过OpenAI的模型通常通过API提供,所以需要说明这一点。 可能还要提到应用实例,比如在构建推荐系统或语义搜索时的应用。需要确保技术细节准确,比如嵌入向量的维度选择对结果的影响。同时,避免使用过于专业的术语,保持解释通俗易懂。最后,检查是否有遗漏的重要信息,比如模型发布的时间、是否支持多语言等。确保回答结构清晰,分点说明核心要点,帮助用户全面理解。</think>Text-Embedding-3-Large 是 OpenAI 于 2024 年 1 月推出的新一代文本嵌入模型,属于其嵌入模型系列的最新成员。以下是它的核心特点和应用解析: --- ### **核心特性** 1. **高维度向量输出** - 支持 **3072 维**(完整维度)和 **1024 维**(降维模式)两种输出选择 - 通过参数 `dimensions=1024` 可主动降维,在保持性能的同时降低计算成本 2. **性能突破** - 在行业标准测试(如 MTEB 基准)中超越前代模型(如 text-embedding-ada-002) - 长文本处理能力增强,尤其擅长捕捉复杂语义关系 3. **灵活适配** - 开发者可根据需求在「高精度」和「轻量化」之间灵活切换维度 - 降维后仍保持约 95% 的原始精度(对比 3072 维完整版) --- ### **技术原理** 模型通过深度学习将文本映射到高维向量空间,使语义相似的文本在向量空间中距离更近。例如: $$ \text{cosine\_similarity}(E("科学实验"), E("实验室研究")) \approx 0.92 $$ 其中 $E(\cdot)$ 表示嵌入函数。 --- ### **典型应用场景** 1. **语义搜索** 提升搜索引擎对用户意图的理解,例如: ```python query_vector = model.encode("新能源车充电方案") doc_vectors = [model.encode(doc) for doc in 知识库] ``` 2. **智能聚类** 自动归类客户反馈: $$ \text{聚类}([E("物流太慢"), E("配送延误"), E("包装精美")]) → \text{物流问题/服务质量} $$ 3. **个性化推荐** 计算内容相似度: $$ \text{推荐分数} = \text{similarity}(用户历史向量, 新内容向量) $$ 4. **多模态桥梁** 可 CLIP 等视觉模型配合,实现图文跨模态检索 --- ### **使用建议** 1. **维度选择策略** - 追求极限精度:使用 3072 维 - 平衡性能成本:1024 维(API 调用费用降低 50%) 2. **输入优化** - 关键文本前置(模型对前 128 tokens 更敏感) - 避免过度缩写("NLP" → "自然语言处理") 3. **行业适配** - 金融领域:需微调以准确识别专业术语 - 医疗场景:注意隐私数据的合规处理 --- ### **同类模型对比** | 模型 | 维度 | MTEB 得分 | 单次调用成本 | |------|------|----------|------------| | text-embedding-3-large | 3072 | **75.6** | $0.13/百万token | | text-embedding-3-small | 1536 | 72.1 | $0.02/百万token | | text-embedding-ada-002 | 1536 | 69.9 | $0.10/百万token | --- 该模型目前通过 OpenAI API 提供,适合需要深度语义理解的企业级应用。使用时建议配合 RAG(检索增强生成)架构,可显著提升大语言模型的事实准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值